-
陆生植物进化时期,大气CO2浓度发生了剧烈变化.在上新世晚期(the Late Pliocene),大气中的CO2浓度为150 μmol/mol,是有记载以来的最低浓度,在18 000~20 000年前的末次冰河时期(LGM),大气中CO2的浓度保持在180~190 μmol/mol之间;到工业革命前,CO2浓度升高到了270 μmol/mol[1].随着工业活动的增加、化石燃料的燃烧和森林的大量砍伐,最近200年CO2浓度急剧上升,目前大约为400 μmol/mol,并预计还将继续上升,在2 100年可能达到700 μmol/mol[2-4].
由于大气CO2浓度是植物光合作用底物,CO2浓度的急剧变化必然对植物的生长、发育和繁殖产生重大影响,从而影响植物生产力,决定群落结构和陆地生态系统功能[2, 5].由于近年来CO2浓度急剧升高,大量的研究关注了大气CO2浓度升高是否或者如何影响了植物、群落及生态系统生产力[6-13].地质历史时期的低CO2浓度,对植物进化产生重要影响,其中LGM时期被认为是限制植物生长和生理功能的一个重要时期[14-16].Cunniff等[17]研究表明,LGM时期谷物进化受到了低CO2浓度的极大限制.现代C3植物在模拟LGM时期的低CO2浓度下生长,光合和生物量生产下降40%~70%[2, 18],存活率下降20%~30%[19],甚至导致不能繁殖[15].基于树木年轮,通过碳同位素技术比较研究美国加州南部拉布雷亚沥青坑(La Brea tar pits)冰期孑遗和现代刺柏Juniperus胞间CO2浓度(Ci)及胞间CO2浓度和大气CO2浓度比例(Ci/Ca)得出直接证据:冰河时期植物生理特征受到低CO2浓度的限制显著[20].
尽管地质史上低CO2浓度对植物个体[15, 18-19, 21]、群落种类组成[21-23]、植被分布[24]及生态系统功能[25-28]等也产生了重要影响,甚至影响了早期人类文明和农业的起源[29],但目前对低CO2浓度的影响研究还比较少.Ward等[3]研究了在末次冰河时期低CO2浓度对C3和C4植物生理和生长的影响;Gergart等[1]对末次冰河时期低CO2浓度对植物的影响进行了全面综述,包括研究方法,低浓度对植物个体生物量产生、分配、生殖和生存的影响等.Sage等[2]研究了植物对过去CO2浓度的响应,并指出低CO2浓度可能是植物进化的“过滤器”(filter).有极少研究关注了植物对冰河时期、前工业革命时期、当前和将来整个CO2浓度连续变化的响应,发现当CO2浓度从冰河时期升高到目前浓度时,其生长的增加幅度远远大于从目前浓度升高到本世纪末可预测的浓度[30-31].研究者通过meta分析,也发现高CO2浓度(>500 μmol/mol)确实增加了植物的光合作用和生物量.然而,增加幅度仅为10%~20%,远远低于预测的50%左右[32-34].因此,冰河时期CO2浓度的微小改变可能会对植物的生物量产生很大影响[1],而在“未来”时间尺度上高CO2浓度的改变对植物的影响可能会下降.
本研究提出以下假设:现代植物在过去低CO2浓度下,其生长将受到极大限制,这种限制却为适应将来高CO2浓度提供可能,也即植物对过去低CO2浓度的极度适应将限制其对将来高CO2浓度的响应.由于一年生草本植物生长速率较快,对CO2浓度等环境因子变化十分敏感,能够快速而客观地表达植物与外部环境的相互关系[35],本研究选择6种常见草本植物,通过模拟“过去、现在和未来”CO2浓度,探讨其生物量积累和分配对不同CO2浓度的响应,研究植物对过去CO2浓度的响应和对将来CO2浓度的响应之间的关系.
The Growth Responses of Six Herbs on the "Past-Present-Future" CO2 Concentration
-
摘要: 以6种草本植物泥胡菜Hemistepta lyrata,网果酸模Rumex chalepensis,野豌豆Vicia Sepium,藜Chenopodium album,风轮菜Clinopodium chinense和玉米石Sedum album为研究对象,利用步入式CO2浓度控制生长室模拟研究了“过去(150 μmol/mol)-现在(400 μmol/mol)-将来(700 μmol/mol)”CO2浓度对植物生长特性的影响.结果表明:CO2浓度升高刺激了6种植物的总生物量和相对生长速率,但CO2浓度从过去的低浓度升高到目前浓度水平时,其升高幅度大于CO2浓度从目前浓度升高到将来浓度水平.在过去水平下CO2浓度升高刺激了6种植物的根质量分数,但将来水平下CO2浓度升高对6种植物的根质量分数没有产生显著性影响.研究结果表明植物对过去CO2浓度的适应性响应会抑制植物对将来CO2浓度的生长响应,但不同物种之间存在差异.该研究结果有助于理解草本植物在未来气候变化下的响应,为评估和预测全球气候变化对植物的生理生态影响提供理论依据.Abstract: Hemistepta lyrata, Rumex chalepensis, Vicia Sepium, Chenopodium album, Clinopodium chinense and Sedum album were used to study the effects of "past (150 μmol/mol)-present (400 μmol/mol)-future (700 μmol/mol)" CO2 concentrations on plants growth in walk-in CO2 concentration chambers.Results showed that CO2 concentration enrichment stimulated the total biomass and relative growth rate in all 6 species, but the increasement from the past low to the present CO2 concentration was greater than that from the current to the future CO2 concentration.The root mass fractions were all stimulated by increased CO2 concentration under present level, but not affected by increased CO2 concentration above present level.These results indicate that plant adaptations to past low [CO2] might still constrain the growth response to future high [CO2].These results were contribute to understand the herb responses to climate change in the future, and provide theoretical basises for assessing and predict the physiological and ecological impacts of global climate change on plants.
-
Key words:
- CO2 concentration /
- biomass /
- relative growth rate /
- evolution /
- global climate change .
-
表 1 6种草本植物在不同CO2浓度升高阶段的响应幅度
% 指标 响应阶段/(μmol·mol-1) 物种 H.lyrata R.chalepensis V.Sepium C.album C.chinense S.album 生物量 150~400 94.9 97.7 86.3 90.1 - 97.2 400~700 17.6 27.9 33.0 21.6 0.3 14.9 相对生长速率 150~400 36.0 63.7 35.2 29.7 - - 400~700 -11.5 0.9 13.1 -0.1 - -122.6 叶干物质质量分数 150~400 17.4 4.5 13.3 21.7 - 31.6 400~700 26.7 10.9 8.9 14.2 3.9 -7.5 总干物质质量分数 150~400 -42.7 8.0 2.3 20.4 - 32.7 400~700 -15.1 9.8 1.2 30.4 -1.3 -8.4 根质量分数 150~400 71.9 62.7 -3.2 17.5 - 53.6 400~700 34.6 1.4 9.7 10 -0.2 3.0 表 2 4个草本植物对不同CO2浓度响应的双因素方差分析
% 方差来源 自由度 F值 生物量 相对生长速率 叶干物质质量分数 干物质质量分数 根质量分数 物种 3 106.613** 227.520** 54.582** 4 562.816** 62.837** CO2 2 66.725** 281.457** 26.296** 83.333** 14.259** 物种×CO2 6 23.810** 15.801** 1.972** 179.016** 6.147** 注: **表示差异极具有统计学意义(p<0.01). -
[1] GERHART L M, WARD J K. Plant Responses to Low CO2 of the Past [J]. New Phytologist, 2010, 188(3): 674-695. doi: 10.1111/j.1469-8137.2010.03441.x [2] doi: https://dialnet.unirioja.es/servlet/articulo?codigo=726558 SAGE R F, COLEMAN J R. Effects of Low Atmospheric CO2 on Plants: More Than a Thing of the Past, TRENDS in Plant [J]. Science, 2001, 6(1): 18-24. [3] WARD J K, MYERS D A, THOMAS R B. Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age [J]. Journal of Integrative Plant Biology, 2008, 50(11): 1388-1395. doi: 10.1111/j.1744-7909.2008.00753.x [4] 蒋高明.全球大气二氧化碳浓度升高对植物的影响[J].植物学通报, 1995, 12(4): 1-7. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT504.000.htm [5] TISSUE D T, LEWIS J D. Learning from the Past: How Low [CO2] Studies Inform Plant and Ecosystem Response to Future Climate Change [J]. New Phytologist, 2012, 194(1): 4-6. doi: 10.1111/j.1469-8137.2012.04081.x [6] 林伟宏.植物光合作用对大气CO2浓度升高的反应[J].生态学报, 1998, 18(5): 529-538. [7] 王建林, 温学发, 赵风华, 等. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响[J].植物生态学报, 2012, 36(5): 438-446. [8] 杜启燃, 雷静品, 刘建锋, 等. CO2浓度增加和施氮对栓皮栎幼苗生理生态特征的影响[J].应用生态学报, 2014, 25(1): 24-30. [9] CORNELLISSEN J H C, CARNELLI A L, CALLAGHAN T V. Generalities in the Growth, Allocation and Leaf Quality Responses to Elevated CO2 in Eight Woody Species [J]. New Phytologist, 1999, 141(3): 401-409. doi: 10.1046/j.1469-8137.1999.00355.x [10] CROUS K Y, ZARAGZA-CASTELLS J, ELLSWORTH D S, et al. Light Inhibition of Leaf Respiration in Field-Grown Eucalyptus Saligna in Whole-Tree Chambers Under Elevated Atmospheric CO2 and Summer Drought [J]. Plant, Cell and Environment, 2012, 35(5): 966-981. doi: 10.1111/pce.2012.35.issue-5 [11] HAWORTH M, ELLIOTT-KINGSTON C, MCELWAIN J C. Co-Ordination of Physiological and Morphological Responses of Stomata to Elevated [CO2] in Vascular Plants [J]. Oecologia, 2013, 171(1): 71-82. doi: 10.1007/s00442-012-2406-9 [12] NEWINGHAM B A, VANIER C H, KELLY L J, et al. Does a Decade of Elevated [CO2] Affect a Desert Perennial Plant Community? [J]. New Phytologist, 2014, 201(2): 498-504. doi: 10.1111/nph.12546 [13] GRANDA E, ROSSATTO D R, CAMARERO J J, et al. Growth and Carbon Isotopes of Mediterranean Trees Reveal Contrasting Responses to Increased Carbon Dioxide and Drought [J]. Oecologia, 2014, 174(1): 307-317. doi: 10.1007/s00442-013-2742-4 [14] POLLEY H W, JOHNSON H B, MAYEUX H S. Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations [J]. Functional Ecology, 1995, 9(1): 86-96. doi: 10.2307/2390094 [15] DIPPERY J K, TISSUE D T, THOMAS R B, et al. Effects of Low and Elevated CO2 on C3 and C4 Annuals I. Growth and Biomass Allocation [J]. Oecologia, 1995, 101(1): 13-20. doi: 10.1007/BF00328894 [16] LEWIS J D, WARD J K, TISSUE D T. Phosphorus Supply Drives Nonlinear Responses of Cottonwood (Populus deltoides) to Increases in CO2 Concentration from Glacial to Future Concentrations [J]. New Phytologist, 2010, 187(2): 438-448. doi: 10.1111/j.1469-8137.2010.03307.x [17] CUNNIFF J, CHARLES M, JONES G, et al. Was Low Atmospheric CO2 a Limiting Factor in the Origin of Agriculture? [J]. Environmental Archaeology, 2010, 15(2): 113-123. doi: 10.1179/146141010X12640787648469 [18] POLLEY W H, JOHNSON H B, MARINO B D, et al. Increase in C3 Plant Water-Use Efficiency and Biomass Over Glacial to Present CO2 Concentrations [J]. Nature, 1993, 361(6407): 61-64. doi: 10.1038/361061a0 [19] WARD J K, KELLY J K. Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis [J]. Ecology Letters, 2004, 7(5): 427-440. doi: 10.1111/ele.2004.7.issue-5 [20] GERHART L M, HARRIS J M, NIPPERT J B, et al. Glacial Trees from the La Brea Tar Pits Show Physiological Constraints of low CO2 [J]. New Phytologist, 2012, 194(1): 63-69. doi: 10.1111/j.1469-8137.2011.04025.x [21] COWLING S A, SAGE R F. Interactive Effects of Low Atmospheric CO2 and Elevated Temperature on Growth, Photosynthesis and Respiration in Phaseolus vulgaris [J]. Plant, Cell and Environment, 1998, 21(4): 427-435. doi: 10.1046/j.1365-3040.1998.00290.x [22] LEVIS S, FOLEY J A, POLLARD D. CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum [J]. Journal of Geophysical Research, 1999, 104(D24): 31191-31198. doi: 10.1029/1999JD900837 [23] FLORES O, GRITTI E S, JOLLY D. Climate and CO2 Modulate the C3-C4 Balance and δ13C Signal in Simulated Vegetation [J]. Climate of the Past Discussions, 2009, 5(3): 1187-1213. [24] JOLLY D, HAXELTINE A. Effect of Low Glacial Atmospheric CO2 on Tropical African Montane Vegetation [J]. Science, 1997, 276(5313): 786-788. doi: 10.1126/science.276.5313.786 [25] BIRD M I, LLOYD J, FARQUHAR G D. Terrestrial Carbon Storage at the LGM [J]. Nature, 1994, 371(6498): 566. doi: 10.1038/371566a0 [26] doi: http://www.sciencedirect.com/science/article/pii/S0921818198000058 FRANCOIS L M, DELIRE C, WARNANT P, et al. Modelling the Glacial-Interglacial Changes in the Continental Biosphere [J]. Global and Planetary Change, 1998(17): 37-52. [27] TURCQ B, CORDEIRO R C, SIFEDDINE A, et al. Carbon Storage in Amazonia During the Last Glacial Maximum: Secondary Data and Uncertainties [J]. Chemosphere, 2002, 49(8): 821-835. doi: 10.1016/S0045-6535(02)00383-1 [28] doi: http://dialnet.unirioja.es/servlet/articulo?codigo=1200937 CRUCIFIX M, BETTS R A, HEWITT C D. Pre-Industrial-Potential and Last Glacial Maximum Global Vegetation Simulated with a Coupled Climate Biosphere Model: Diagnosis of Bioclimatic Relationships [J]. Global and Planetary Change, 2004, 45(4): 295-312. [29] SAGE R F. Was Low Atmospheric CO2 During the Pleistocene a Limiting Factor for the Origin of Agriculture? [J]. Global Change Biology, 1995, 1(2): 93-106. doi: 10.1111/gcb.1995.1.issue-2 [30] TISSUE D T, GRIFFIN K L, THOMAS R B, et al. Effects of Low and Elevated CO2 on C3 and C4 AnnualsⅡ. Photosynthesis and Leaf Biochemistry [J]. Oecologia, 1995, 101(1): 21-28. doi: 10.1007/BF00328895 [31] WARD J K, MYERS D A, THOMAS R B. Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age [J]. Journal of Integrative Plant Biology, 2008, 50(11): 1388-1395. doi: 10.1111/j.1744-7909.2008.00753.x [32] doi: https://www.researchgate.net/publication/225212490_Interspecific_Variation_in_the_Growth-Response_of_Plants_to_An_Elevated_Ambient_CO2_Concentration POORTER H. Interspecific Variation in the Growth Response of Plants to an Elevated Ambient CO2 Concentration [J]. Vegetatio, 1993(104): 77-97. [33] CURTIS P S, WANG X Z. A Meta-Analysis of Elevated CO2 Effects on Woody Plant Mass, form, and Physiology [J]. Oecologia, 1998, 113(3): 299-313. doi: 10.1007/s004420050381 [34] POORTER H, NAVAS M L. Plant Growth and Competition at Elevated CO2: on Winners, Losers Andfunctional Groups [J]. New Phytologist, 2003, 157(2): 175-198. doi: 10.1046/j.1469-8137.2003.00680.x [35] SMITH S D, CHARLET T N, ZITZER S F, et al. Long-Term Response of a Mojave Desert Winter Annual Plant Community to a Whole-Ecosystem Atmospheric CO2 Manipulation (FACE) [J]. Global Change Biology, 2014, 20(3): 879-892. doi: 10.1111/gcb.2014.20.issue-3 [36] 柴伟玲, 类延宝, 李扬苹, 等.外来入侵植物飞机草和本地植物异叶泽兰对大气CO2浓度升高的响应[J].生态学报, 2014, 30(13): 3744-3751. [37] THOMAS R B, STRAIN B R. Root Restriction as a Factor in Photosynthetic Acclimation of Cotton Seedlings Grown in Elevated Carbon Dioxide [J]. Plant Physiol, 1991, 96(2): 627-634. doi: 10.1104/pp.96.2.627 [38] ALLEN L H J, BISBAL E C, BOOTE K J, et al. Soybean Dry Matter Allocation Under Subambient and Superambient Levels of Carbon Dioxide [J]. Agron J, 1991, 83(5): 875-883. doi: 10.2134/agronj1991.00021962008300050020x [39] WARD J K, STRAIN B R. Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis ttiaiiana from Different Elevations [J]. Plant, Cell and Environment, 1997, 20(2): 254-260. doi: 10.1046/j.1365-3040.1997.d01-59.x [40] CELIA C C, JAMES S C, HAROLD A M. Controls of Biomass Partitioning Between Roots and Shoots: Atmospheric CO2 Enrichment and the Acquisition and Allocation of Carbon and Nitrogen in Wild Radish [J]. Oecologia, 1992, 89(4): 580-587. doi: 10.1007/BF00317167 [41] 李玉霖, 崔建垣, 苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J].生态学报, 2005, 25(2): 304-311. doi: 10.17521/cjpe.2005.0039 [42] doi: https://link.springer.com/chapter/10.1007/978-94-011-1797-5_12?no-access=true IDSO S B, KIMBALL B A, MAUNEY J R. Atmospheric CO2 Enrichment and Plant Dry Matter Content [J]. Agricultural and Forest Meteorology, 1998, 43(2): 171-181.