-
自1963年Lorenz[1]提出第一个三维自治混沌系统以来,大量三维混沌系统被构造[2-5],这些系统的研究也激发了人们对Lorenz类系统的探讨.由于平面自治系统不可能产生混沌,而在自治系统中出现混沌至少是三维,因此,在对混沌机理讨论过程中,三维二次自治系统的研究对揭示混沌的产生机理具有特别重要的意义.对于Lorenz类的系统,其混沌判定的定性准则主要是通过Shilnikov定理[6-7]来进行,且要求至少具有一个不稳定的双曲平衡点(鞍焦型),然而Shilnikov定理只是混沌产生的充分条件,而非必要条件,这样对于具有稳定平衡点甚至是没有平衡点或者有无穷多平衡点的系统,在远离平衡点处是否会产生混沌就成为一个新的课题,同时其系统的全局动力学行为等相关问题也会成为数学工作者和工程技术人员面临的一个重要挑战,而且,这些研究无论是对混沌理论或者是混沌应用都至关重要.近几年新的混沌系统不断被提出[5-15],然而这些系统几乎都是通过计算机数值仿真对系统的Lyapunov指数、分岔图、平衡点稳定性等进行分析,其全局动力学行为以及系统的各类分岔行为、周期行为等并没有得到深入的理论分析.为了定性研究此类系统的内部结构以及动力学行为,本文在给出一类具有隐藏吸引子的三维Jerk混沌系统
的基础上,首先通过数值仿真对其基本动力学进行分析,进而运用Poincare紧致化理论对系统(1) 的无穷远动力学进行分析,同时运用平均方法,采用扰动理论对系统(1) 的周期解进行定性分析,并运用数值仿真进行了验证.
Dynamics Analysis and Periodic Solution of a 3D Jerk System with Hidden Attractor
-
摘要: 数值分析了一类具隐藏吸引子的三维Jerk系统在不同参数条件下的周期1、周期2、混沌吸引子、Lyapunov指数谱、分叉等,并运用Poincare紧致化理论对系统的无穷远动力学进行了分析,通过零倾线给出了系统在无穷远点处的局部动力学行为.同时,运用平均化方法和等时系统扰动理论,定性分析并计算了系统的解析周期解.最后通过数值实验,对平均化方法所得解析周期解与Rong-Kutta方法所得数值解进行了仿真,验证了文中理论分析的正确性.Abstract: Basic dynamics such as period one attractor, period two attractor, chaotic attractor, Lyapunov exponent spectrum and bifurcation for a 3D Jerk system with hidden attractor were studied in this paper by using numerical methods. Also, by using the Poincare compactification of polynomial vector field inR3, the dynamics near infinite singularities were obtained. Furthermore, the local phase portraits of the infinite singularities were obtained by using aclinic line. Moreover, in accordance with the theory of average and perturbation of isochronous system, the analytic periodic solution of this system were analyzed and obtained. The simulation results demonstrate the correctness of the dynamics analysis and periodic solution computation and verified by Rong-Kutta method.
-
Key words:
- Jerk system /
- hidden attractor /
- periodic solution .
-
表 1 不同参数条件下系统(1) 的动力学行为
参数值 吸引子 Lyapunov指数 相图 a=0.98,b=1.08,c=1,e=-1,f=-0.4,g=0,h=0 周期1 [0,-0.09,-0.91] 图 1(a) a=0.995,b=1.08,c=1,e=-1,f=-0.4,g=0,h=0 周期2 [0,-0.03,-0.98] 图 1(b) a=1,b=1.08,c=1,e=-1,f=-0.4,g=0,h=0 混沌 [0.03,0,-1.03] 图 1(c) a=0.99,b=1,c=1.1,e=-2.9,f=-1,g=-1.1,h=0 周期1 [0,-0.09,-1.76] 图 1(d) a=0.995,b=1,c=1.1,e=-2.9,f=-1,g=-1.1,h=0 周期2 [0,-0.06,-1.86] 图 1(e) a=1,b=1,c=1.1,e=-2.9,f=-1,g=-1.1,h=0 混沌 [0.07,0,-1.98] 图 1(f) -
[1] LORENZ E N. Deterministic Nonperiodic Flow [J]. Journal of The Atmospheric Sciences, 1963, 20(2): 130-141. doi: 10.1175/1520-0469(1963)020 < 0130:DNF > 2.0.CO; 2 [2] Chen G R, Ueta T. Yet Another Chaotic Attractor [J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1466. doi: 10.1142/S0218127499001024 [3] LÜ J H, CHEN GR. A New Chaotic Attractor Coined, International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661. [4] doi: https://www.researchgate.net/publication/267668015_Analysis_of_a_dynamical_system_derived_from_the_Lorenz_system TIGAN G. Analysis of A Dynamical System Derived From the Lorenz System [J]. Scientific Bulletin of the Politehnica University of Timisoara, 2005, 50(64): 61-72. [5] YANG Q G, CHEN G R. A Chaotic System with One Saddle and Two Stable Node-Foci [J]. International Journal of Bifurcation and Chaos, 2008, 18(5): 1393-1414. doi: 10.1142/S0218127408021063 [6] SHIL'NIKOV L P. A Case of the Existence of a Countable Number of Periodic Motions [J]. Soviet Mathematics, 1965, 6: 163-166. [7] doi: http://iopscience.iop.org/article/10.1070/SM1970v010n01ABEH001588 SHIL'NIKOV L P. A Contribution to the Problem of the Structure of an Extended Neighborhood of a Rough Equilibrium State of Saddle-Focus Type [J]. Mathematics, 1970, 10(1): 91-102. [8] YANG Q G, WEI Z C, CHEN G R. An Unusual 3d Autonomous Quadratic Chaotic System with Two Stable Node-Foci [J]. International Journal of Bifurcation andand Chaos, 2010, 20(4): 1061-1083. doi: 10.1142/S0218127410026320 [9] LEONOV G A, KUZNETSOV N V, VAGAITSEV V I. Localization of Hidden Chua's Attractors [J]. Physics Letters A, 2011, 375 (23): 2230-2233. doi: 10.1016/j.physleta.2011.04.037 [10] LEONOV G A, KUZNETSOV N V, VAGAITSE V I. Hidden Attractor in Smooth Chua Systems [J]. Physica D, 2012, 241(18): 1482-1486. doi: 10.1016/j.physd.2012.05.016 [11] LEONOV G A, KUZNETSOV N V. Prediction of Hidden Oscillations Existence in Nonlinear Dynamical Systems: Analytics andand Simulation [J]. Advancesin Intelligent Systems andand Computing, 2013, 210: 5-13. doi: 10.1007/978-3-319-00542-3 [12] WANG X, CHEN, G R. A Chaotic System with Only One Stable Equilibrium [J]. Communications in Nonlinear Science andand Numerical Simulation, 2012, 17(3): 1264-1272. doi: 10.1016/j.cnsns.2011.07.017 [13] WANG X, CHEN G R. Constructing a Chaotic System with Any Number of Equilibria [J]. Nonlinear Dynamics, 2013, 71(3): 429-436. doi: 10.1007/s11071-012-0669-7 [14] doi: https://www.researchgate.net/publication/257941665_Simple_chaotic_flows_with_a_line_equilibrium JAFARI S, SPROTT J C. Simple Chaotic Flows with a Line Equilibrium [J]. Chaos, Solitons andand Fractals, 2013, 57(12): 79-84. [15] JAFARI S, SPROTT J C, Golpayegani S. Elementary Quadratic Chaotic Flows with No Equilibria [J]. Physics Letters A, 2013, 377(9): 699-702. doi: 10.1016/j.physleta.2013.01.009 [16] DUMORTIER F, LLIBRE J, ARTES J C. Qualitative Theory of Planar Differential Systems [M]. Berlin: Speinger, 2006: 149-164. [17] ROBINSON R C. An Introduction to Dynamical Systems: Continuous and Discrete [M]. New York: American Mathematical Society, 2012: 99-146. [18] GUCKENHEIMER J, HOLMES P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields [M]. Berlin: Speinger, 2002. [19] doi: https://www.researchgate.net/publication/265372129_Periodic_solutions_of_nonlinear_periodic_differential_systems_with_a_small_parameter BUIC A, FRANCOISE J P, LLIBRE J. Periodic Solutions of Nonlinear Periodic Differential Systems with a Small Parameter [J]. Communications on Pure and Applied Analysis, 2007, 6(1): 103-111.