-
文献[1-2]研究了骨头的分层结构,骨组织可分为密质骨和松质骨.哈弗氏密质骨由骨单位和间质骨组成.骨单位是由同心圆排列的骨板围成的长筒状结构,中心有一纵向的哈弗氏管,内含血管和神经.间质骨位于骨单位之间,形状不规则,是旧的骨单位在骨的改建过程中被吸收后残留的部分[3-4].由于哈弗氏管和骨单位的微观结构对密质骨力学性能有重要影响,因而模型考虑了这些微观结构.从微观结构和力学行为出发,哈弗氏密质骨与纤维涂层复合材料相似[5]:哈弗氏管与纤维类似,骨单位与涂层类似,间质骨与基类似,粘合线相当于界面.因而,可以将密质骨的分层结构与纤维涂层复合材料类比.
文献[6-7]研究了骨的疲劳现象,这种现象在医学上被认为是应力断裂.由于日常运动的循环载荷,骨组织的微观损伤以微裂纹的形式表现出来[8-9].实验方法常用来研究骨单位的结构和断裂[10-12].骨的微结构有利于微裂纹的萌生[12],但骨单位阻碍密质骨中微裂纹的扩展,这种作用还依赖于微裂纹的长度[11-12].计算机模拟,尤其是有限元方法已应用于密质骨断裂力学问题的研究.文献[13]利用有限元方法模拟了哈弗氏密质骨骨单位附近微裂纹的扩展.理论研究,尤其是奇异积分方程方法也应用于密质骨断裂力学问题的研究[4, 14-15].文献[4]研究了密质骨骨单位与单条微裂纹的相互作用,结果表明软骨单位有利于微裂纹的扩展,而硬骨单位阻碍微裂纹沿着骨单位扩展[4].文献[14-15]研究了多个微裂纹与骨单位的相互作用,结果表明这种相互作用仅局限在骨单位附近,同时也分析了不同形态下,微裂纹相互作用的增强和屏蔽作用.但是,理论上对哈弗氏密质骨间质骨含微裂纹问题还没有研究过,因而有必要利用奇异积分方程方法研究哈弗氏密质骨间质骨含微裂纹问题.
Numerical Solution of the Singular Integral Equation for the Problem of the Haversian Cortical Bone with a Radial Microcrack
-
摘要: 研究了在双轴拉伸载荷下哈弗氏密质骨间质骨含单条径向微裂纹的平面应变问题.通过利用奇异积分方程方法,得到了该问题所满足的奇异积分方程组,给出了微裂纹尖端应力强度因子的表达式.数值计算讨论了哈弗氏密质骨的材料和几何参数对微裂纹尖端应力强度因子的影响.数值结果表明软骨单位促进微裂纹扩展,而硬骨单位抑制微裂纹扩展,但这种影响仅局限在骨单位附近.Abstract: In this paper, the plane strain problem for the Haversian cortical bone with a radial microcrack in the interstitial bone under biaxial tension loading is considered. By using the singular integral equation method, the problem is formulated into a system of singular integral equations and the corresponding stress intensity factor is formulated. The effects of the material and the geometric parameters of the Haversian cortical bone upon the microcrack tip's stress intensity factor are numerically studied. The numerical results suggest that when the osteon is softer than the interstitial bone the osteon prompts the microcrack propagation, while when the osteon is stiffer than the interstitial bone the osteon repels microcrack propagation. However, this interaction effect is limited near the osteon.
-
Key words:
- Haversian cortical bone /
- microcrack /
- singular integral equation /
- stress intensity factor .
-
[1] FRATZL P, GUPTA H S, PASCHALIS E P, et al. Structure and Mechanical Quality of the Collagen-Mineral Nano-Composite in Bone [J]. Journal of Materials Chemistry, 2004, 14: 2115-2123. doi: 10.1039/B402005G [2] FRATZL P, WEINKAMER R. Nature's Hierarchical Materials [J]. Progress in Materials Science, 2007, 52(8): 1263-1334. doi: 10.1016/j.pmatsci.2007.06.001 [3] HOGAN H A. Micromechanics Modeling of Haversian Cortical Bone Properties [J]. Journal of Biomechanics, 1992, 25(5): 549-556. doi: 10.1016/0021-9290(92)90095-I [4] GUO X E, LIANG L C, GOLDSTEIN S A. Micromechanics of Osteonal Cortical Bone Fracture [J]. Journal of Biomechanical Engineerring, 1998, 120(1): 112-117. doi: 10.1115/1.2834290 [5] HOC T, HENRY L, VERDIER M, et al. Effect of Microstructure on the Mechanical Properties of Haversian Cortical Bone [J]. Bone, 2006, 38: 466-474. doi: 10.1016/j.bone.2005.09.017 [6] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological Materials: Structure and Mechanical Properties [J]. Progress in Materials Science, 2008, 53(1): 1-206. doi: 10.1016/j.pmatsci.2007.05.002 [7] TEMENOFF J S, MIKOS A G. 生物材料——生物学与材料科学的交叉[M]. 王远亮, 等, 译. 北京: 科学出版社, 2008. [8] ZIOUPOS P. Accumulation of in-Vivo Fatigue Microdamage and its Relation to Biomechanical Properties in Ageing Human Cortical Bone [J]. Journal of Microscopy, 2001, 201(2): 270-278. doi: 10.1046/j.1365-2818.2001.00783.x [9] MOW V C, HUISKES R. 骨科生物力学暨力学生物学[M]. 汤亭亭, 裴国献, 李旭, 等, 译. 山东: 山东科学技术出版社, 2005. [10] NALLA R K, KRUZIC J J, KINNEY J H, et al. Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves [J]. Bone, 2004, 35(6): 1240-1246. doi: 10.1016/j.bone.2004.07.016 [11] O'BRIEN F J, TAYLOR D, LEE T C. The Effect of Bone Microstructure on the Initiation and Growth of Microcracks [J]. Journal of Orthopaedic Research, 2005, 23(2): 475-480. doi: 10.1016/j.orthres.2004.08.005 [12] MOHSIN S, O'BRIEN F J, LEE T C. Osteonal Crack Barriers in Ovine Compact Bone [J]. Journal of Anatomy, 2006, 208(1): 81-89. doi: 10.1111/joa.2006.208.issue-1 [13] NAJAFI A R, ARSHI A R, ESLAMI M R, et al. Micromechanics Fracture in Osteonal Cortical Bone: A Study of the Interactions Between Microcrack Propagation, Microstructure and the Material Properties [J]. Journal of Biomechanics, 2007, 40: 2788-2795. doi: 10.1016/j.jbiomech.2007.01.017 [14] NAJAFI A R, ARSHI A R, ESLAMI M R, et al. Haversian Cortical Bone Model with Many Radial Microcracks: An Elastic Analytic Solution [J]. Medical Engineering and Physics, 2007, 29(6): 708-717. doi: 10.1016/j.medengphy.2006.08.001 [15] NAJAFI A R, ARSHI A R, SAFFAR K P, et al. A Fiber-Ceramic Matrix Composite Material Model for Osteonal Cortical Bone Fracture Micromechanics: Soultion of Arbitrary Microcracks Interaction [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(3): 217-223. doi: 10.1016/j.jmbbm.2008.06.003 [16] HILLS D A, KELLY P A, DAI D N, et al. Solution of Crack Problems: the Distributed Dislocation Technique [M]. Dordrecht: Kluwer, 1996. [17] 李星.积分方程[M].北京:科学出版社, 2008. [18] XIAO Z M, CHEN B J. Stress Intensity Factor for a Griffith Crack Interacting with a Coated Inclusion [J]. International Journal of Fracture, 2001, 108: 193-205. doi: 10.1023/A:1011066521439 [19] MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Groningen Holland: P. NoordhoffLtd, 1953. [20] LI X, LI Z X. Effect of a Periodic Elastic Gasket on Periodic Cracks [J]. Engineering Fracture Mechanics, 1993, 46(1): 127-131. doi: 10.1016/0013-7944(93)90309-G [21] XIAO Z M, CHEN B J. On the Interaction Between an Edge Dislocation and a Coated Inclusion [J]. International Journal of Solids and Structures, 2001, 38: 2533-2548. doi: 10.1016/S0020-7683(00)00169-4 [22] ERDOGAN F, GUPTA G D, RATWANI M. Interaction Between a Circular Inclusion and an Arbitrarily Oriented Crack [J]. Journal of Applied Mechanics, 1974, 41(4): 1007-1013. doi: 10.1115/1.3423424 [23] 徐芝纶.弹性力学简明教程[M]. 3版.北京:高等教育出版社, 2002. [24] O'BRIEN F J, TAYLOR D, LEET C. Bone as a Composite Material: The Role of Osteons as Barriers to Crack Growth in Compact Bone [J]. International Journal of Fatigue, 2007, 29: 1051-1056. doi: 10.1016/j.ijfatigue.2006.09.017 [25] 卢钰松, 王五生.一类含有p次幂的Volterra-Fredholm型非线性迭代积分不等式[J].西南大学学报(自然科学版), 2015, 37(8): 76-80. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2015-08-076&flag=1 [26] 侯宗毅, 王五生.一类变下限非线性Volterra-Fredholm型积分不等式及其应用[J].西南师范大学学报(自然科学版), 2016, 41(2): 21-25. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201602005.htm