留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响

上一篇

下一篇

曹岩坡, 代鹏, 戴素英. 丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响[J]. 西南大学学报(自然科学版), 2017, 39(5): 43-48. doi: 10.13718/j.cnki.xdzk.2017.05.007
引用本文: 曹岩坡, 代鹏, 戴素英. 丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响[J]. 西南大学学报(自然科学版), 2017, 39(5): 43-48. doi: 10.13718/j.cnki.xdzk.2017.05.007
Yan-po CAO, Peng DAI, Su-ying DAI. Effects of Arbuscular Mycorrhiza Fungi (AMF) on Osmoregulation Substances and Antioxidant Enzyme Activities of Asparagus Plant Under Salt Stress[J]. Journal of Southwest University Natural Science Edition, 2017, 39(5): 43-48. doi: 10.13718/j.cnki.xdzk.2017.05.007
Citation: Yan-po CAO, Peng DAI, Su-ying DAI. Effects of Arbuscular Mycorrhiza Fungi (AMF) on Osmoregulation Substances and Antioxidant Enzyme Activities of Asparagus Plant Under Salt Stress[J]. Journal of Southwest University Natural Science Edition, 2017, 39(5): 43-48. doi: 10.13718/j.cnki.xdzk.2017.05.007

丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响

  • 基金项目: 河北省科技支撑计划(17226913D);河北省农业创新工程(F17R07)
详细信息
    作者简介:

    曹岩坡(1981-),男,硕士,副研究员,主要从事蔬菜栽培生理方向研究 .

    通讯作者: 戴素英,研究员
  • 中图分类号: S644.6

Effects of Arbuscular Mycorrhiza Fungi (AMF) on Osmoregulation Substances and Antioxidant Enzyme Activities of Asparagus Plant Under Salt Stress

  • 摘要: 以芦笋品种‘NJ978’为材料,研究了丛枝菌根真菌(AMF)对NaC1胁迫下芦笋幼苗生长、渗透调节物质及抗氧化酶活性的影响.结果表明:在非盐条件下,接种AMF可以显著促进芦笋植株的生长,提高拟叶可溶性蛋白质量分数、SOD、POD和CAT活性.在NaC1胁迫下,芦笋幼苗生长受到严重抑制,株高、地上部和地下部鲜质量、干质量均显著降低,接种AMF可以有效缓解盐胁迫对芦笋幼苗生长的抑制.在盐胁迫下,芦笋拟叶可溶性蛋白质量分数、MDA质量分数、电解质渗透率和POD活性均比对照显著升高,SOD和CAT活性显著降低;接种AMF可以显著提高盐胁迫下芦笋拟叶可溶性蛋白质量分数、SOD、POD和CAT活性,而显著降低MDA质量分数和电解质渗透率.由此表明,盐胁迫下接种AMF可通过促进芦笋体内渗透调节物质积累和提高抗氧化酶活性,有效降低细胞膜脂过氧化水平,从而缓解盐胁迫对植株的伤害.
  • 加载中
  • 图 1  AMF对盐胁迫下芦笋拟叶可溶性蛋白质量分数的影响

    图 2  AMF对盐胁迫下芦笋植株拟叶MDA质量分数和电解质渗透率的影响

    图 3  AMF对盐胁迫下芦笋植株拟叶SOD,POD和CAT活性的影响

    表 1  AMF对盐胁迫下芦笋植株生长和菌根侵染率的影响

    处理 株高/cm 鲜质量/g 干质量/g 菌根侵染率/% 菌根依存度/%
    地上部 地下部 地上部 地下部
    CK 59.3±1.4 b 7.88±0.22 b 3.85±0.14 b 0.58±0.03 b 0.37±0.01 b 0 0
    AMF 62.8±2.1a 8.56±0.18 a 4.29±0.17 a 0.66±0.04 a 0.42±0.02 a 58.1±1.7a 19.56±0.8 b
    NaCl 46.1±1.7 d 4.45±0.27 d 3.02±0.21 d 0.39±0.02 d 0.25±0.02 d 0 0
    AMF+NaCl 53.2±0.8 c 5.62±0.25 c 3.54±0.25 c 0.47±0.03 c 0.30±0.01 c 47.5±2.2 b 23.75±1.1 a
     注:表中不同小写字母表示在p<0.05水平下差异具有统计学意义.
    下载: 导出CSV
  • [1] 赵可夫, 范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社, 2005.
    [2] 张翯, 顾万荣, 王泳超, 等. DCPTA对盐胁迫下玉米苗期根系生长、渗透调节及膜透性的影响[J].生态学杂志, 2015, 34(9): 2474-2481. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201509012.htm
    [3] 赵莹, 杨克军, 赵长江, 等.外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫[J].中国农业科学, 2014, 47(20): 3962-3972. doi: 10.3864/j.issn.0578-1752.2014.20.004
    [4] 钱琼秋, 宰文珊, 朱祝军, 等.外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响[J].植物生理与分子生物学学报, 2006, 32(1): 107-112. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200601016.htm
    [5] 谷文英, 李兴正, 祈新梅, 等.外源一氧化氮对盐胁迫下菊苣生长及渗透调节物质的影响[J].生态学杂志, 2013, 32(3): 615-620. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201303016.htm
    [6] 曹岩坡, 代鹏, 戴素英.盐胁迫对芦笋幼苗生长和体内Na+, K+, Ca2+分布的影响[J].西南大学学报(自然科学版), 2014, 36(10): 31-36. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2014-10-031&flag=1
    [7] 张玉霞, 张立军, 王艳树, 等.盐碱对芦笋胁迫效应的分析[J].安徽农业科学, 2006, 34(18): 4678-4679, 4682. doi: 10.3969/j.issn.0517-6611.2006.18.087
    [8] 宋会兴, 彭远英, 钟章成.干旱生境中接种丛枝菌根真菌对三叶鬼针草(Bidens pilosa L.)光合特征的影响[J].生态学报, 2008, 28(8): 3744-3751. doi: http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stxb200808030
    [9] 闫妍, 孙超, 于贤昌, 等.低温胁迫对接种丛枝菌根真菌番茄幼苗生理特性的影响[J].中国农业大学学报, 2011, 16(6): 64-69. doi: http://www.cqvip.com/QK/90547A/201106/41006849.html
    [10] 李思龙, 张玉刚, 陈丹明, 等.丛枝菌根对高温胁迫下牡丹生理生化的影响[J].中国农学通报, 2009, 25(7): 154-157. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200907036.htm
    [11] 曹岩坡, 代鹏, 戴素英, 等.丛枝菌根真菌(AMF)对盐胁迫下芦笋幼苗生长及体内Na+, K+, Ca2+, Mg2+含量和分布的影响[J].生态学杂志, 2015, 34(6): 1699-1704. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201506032.htm
    [12] 冯固, 李晓林, 张福锁, 等.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报, 2000, 11(4): 595-598. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200004025.htm
    [13] 韩冰, 郭世荣, 贺超兴, 等.丛枝菌根真菌对盐胁迫下黄瓜植株生长、果实产量和品质的影响[J].应用生态学报, 2012, 23(1): 154-158. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201201023.htm
    [14] 贺忠群, 贺超兴, 闫妍, 等.盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控[J].园艺学报, 2011, 38(2): 273-280. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201102012.htm
    [15] CENGIZ K, MUHAMMED A, OSMAN S, et al. The Influence of Arbuscular Mycorrhizal Colonisation on Key Growth Parameters and Fruit Yield of Peper Plants Grown at High Salinity[J]. Scientia Horticulturae, 2009, 121(1): 1-6. doi: 10.1016/j.scienta.2009.01.001
    [16] 韩冰, 贺超兴, 郭世荣, 等.丛枝菌根真菌对盐胁迫下黄瓜幼苗渗透调节物质含量和抗氧化酶活性的影响[J].西北植物学报, 2011, 31(12): 2492-2497. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201112025.htm
    [17] 李合生, 孙群, 赵世杰, 等.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000.
    [18] 郑青松, 刘玲, 刘友良, 等.盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响[J].植物生理与分子生物学学报, 2003, 29(6): 585-588. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200306016.htm
    [19] MUNNS R. Comparative Physiology of Salt and Water Stress[J]. Plant, Cell and Environment, 2002, 25: 239-250. doi: 10.1046/j.0016-8025.2001.00808.x
    [20] doi: http://hortsci.ashspublications.org/content/43/3/710.full CARTER C T, GRIEVE C M. Mineral Nutrition, Growth and Germination of Antirrhinum majus L. (Snapdragon) when Produced Under Increasingly Saline Conditions[J]. Hort Science, 2008, 43(3): 710-718.
    [21] doi: https://www.researchgate.net/publication/279907053_Tomato_growth_in_response_to_salinity_and_mycorrhizal_fungi_from_saline_or_nonsaline_soils COPEMAN R H, MARTIN C A, STUTZ J C. Tomato Growth in Response to Salinity and Mycorrhizal Fungi from Saline or Nonsaline Soils[J]. HortScience, 1996, 31(3): 341-344.
    [22] 程勋东, 隋益虎, 张健.外源SA对硝酸盐胁迫下辣椒幼苗抗氧化酶活性及渗透调节物质的影响[J].安徽科技学院学报, 2015, 29(6): 56-60. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ANJS201506012.htm
    [23] HUANG Z, HE C X, HE Z Q, et al. The Effects of Arbuscular Mycorrhizal Fungi on Reactive Oxyradical Scavenging System of Tomato Under Salt Tolerance[J]. Agricultural Sciences in China, 2010, 9(8): 1150-1159. doi: 10.1016/S1671-2927(09)60202-9
    [24] 杜永吉, 于磊, 孙吉雄, 等.自然降温过程中不同结缕草品种电解质渗透率的动态变化[J].草业科学, 2008, 25(8): 121-125. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX200808030.htm
    [25] 杨牟, 何平, 段才绪, 等.外源SNP, Spd对盐碱胁迫下射干幼苗体内抗氧化酶活性的影响[J].西南大学学报(自然科学版), 2015, 37(6): 13-19. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2015-06-013&flag=1
    [26] 贺学礼, 赵丽莉, 李英鹏. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响[J].生态学报, 2005, 25(1): 188-193. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200501028.htm
    [27] 贺忠群, 贺超兴, 张志斌, 等.丛枝菌根真菌对番茄渗透调节物质含量的影响[J].园艺学报, 2007, 34(1): 147-152. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-YYXB200701029.htm
  • 加载中
图( 3) 表( 1)
计量
  • 文章访问数:  1038
  • HTML全文浏览数:  678
  • PDF下载数:  161
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-08-30
  • 刊出日期:  2017-05-20

丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响

    通讯作者: 戴素英,研究员
    作者简介: 曹岩坡(1981-),男,硕士,副研究员,主要从事蔬菜栽培生理方向研究
  • 河北省农林科学院 经济作物研究所,石家庄 050051
基金项目:  河北省科技支撑计划(17226913D);河北省农业创新工程(F17R07)

摘要: 以芦笋品种‘NJ978’为材料,研究了丛枝菌根真菌(AMF)对NaC1胁迫下芦笋幼苗生长、渗透调节物质及抗氧化酶活性的影响.结果表明:在非盐条件下,接种AMF可以显著促进芦笋植株的生长,提高拟叶可溶性蛋白质量分数、SOD、POD和CAT活性.在NaC1胁迫下,芦笋幼苗生长受到严重抑制,株高、地上部和地下部鲜质量、干质量均显著降低,接种AMF可以有效缓解盐胁迫对芦笋幼苗生长的抑制.在盐胁迫下,芦笋拟叶可溶性蛋白质量分数、MDA质量分数、电解质渗透率和POD活性均比对照显著升高,SOD和CAT活性显著降低;接种AMF可以显著提高盐胁迫下芦笋拟叶可溶性蛋白质量分数、SOD、POD和CAT活性,而显著降低MDA质量分数和电解质渗透率.由此表明,盐胁迫下接种AMF可通过促进芦笋体内渗透调节物质积累和提高抗氧化酶活性,有效降低细胞膜脂过氧化水平,从而缓解盐胁迫对植株的伤害.

English Abstract

  • 土壤盐渍化是制约植物生长的主要胁迫因素之一,据统计,我国目前拥有各类可利用盐碱地资源约3 200万hm2,其中具有农业利用前景的盐碱地总面积1 230万hm2[1],盐碱地的治理与农业利用技术研发和应用成为国内外研究的热点.盐胁迫下植物生长发育受阻,叶片膜脂过氧化加剧,生物膜受到不同程度地伤害,MDA质量分数、Ec值、脯氨酸及可溶性蛋白等渗透调节物质显著增加,盐生植株可通过提高体内抗氧化酶活性来清除活性氧、提高渗透调节物质质量分数、降低MDA质量分数,从而降低体内膜脂过氧化水平和质膜破坏程度,减轻胁迫伤害[2-5].芦笋(Asparagus officinalis L.)为百合科天门冬属多年生草本植物,具有较强的耐盐碱能力,芦笋在0.3%以下的中轻度盐碱地上可以正常生长,但在0.5%以上重度盐碱地上其生存受到严重威胁[6-7].

    丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)在自然界中广泛存在,侵染植物根系后与宿主植物建立一种互惠共生的关系.已有研究表明,菌根共生体能够提高寄主植物的抗旱性[8]、耐寒性[9]、耐热性[10]和耐盐性[11]等多种抗逆能力.近年来已有研究报道AMF可以提高玉米、辣椒、黄瓜和番茄等植物的抗盐性,接种AMF可以提高植物根系对矿质元素的吸收、增加渗透调节物质、提高保护酶活性,从而减轻和缓解盐伤害[12-15],但目前有关AMF增强芦笋耐盐性的研究报道尚少.本试验研究盐胁迫下AMF对芦笋植株生长及体内渗透调节物质质量分数、保护酶活性、膜脂过氧化作用的影响,以探讨AMF提高芦笋耐盐性的生理机制.

  • 试验于2015年2-6月在河北省农林科学院经济作物研究所温室进行,供试芦笋品种为“NJ978”,接种的丛枝菌根真菌来源于捷克球囊霉属菌系:摩西球囊霉glomous mosseae(GM),菌剂的孢子密度4个/g沙土.育苗基质为m(草炭):m(蛭石):m(鸡粪)=2:2:1,混合均匀后灭菌[16].

    选取饱满一致的芦笋种子浸种催芽,待种子发芽后分别播于装有接种10 g菌剂和接种10 g灭菌接种物(保持营养物的一致)的基质的营养钵中育苗;昼温27~29 ℃、夜温18~20 ℃;播种后60 d将幼苗移栽至40 cm×40 cm花盆,移栽后20 d,选取生长一致的植株进行0.6%(此体积分数由预试验筛选)NaCl处理.试验设4个处理,①对照(CK):未接菌+清水;②接菌处理(AMF):接菌+清水;③盐处理(NaCl):未接菌+NaCl;④接菌盐处理(AMF+NaCl):接菌+NaCl.盐处理每4 d浇灌1次0.6% NaCl溶液,每盆200 mL,对照浇灌等量清水,为保证盐体积分数,花盆下放托盘,如有渗漏将渗出液倒回,最后一次处理后(第6次灌溉)可溶性盐质量分数(EC值)依次为1.1,0.9,4.4,4.3 mS/cm.试验采用完全随机设计,每处理30盆,3次重复.盐处理后第0,4,8 d,取各处理植株生长点向下10 cm的所有拟叶进行各项生理指标的测定;处理后第15 d测定植株生长量.

  • 将各处理植株各取3株测量株高及地上部和地下部干质量、鲜质量[11];将根系取样,取30个根段采用苯胺蓝染色,镜检后通过频率标准法计算菌根侵染率;采用考马斯亮蓝G-250法测定可溶性蛋白质量分数[17];硫代巴比妥酸法测定MDA质量分数[17];电导法测定电解质渗漏率[17];SOD活性测定NBT法[17];愈创木酚法测定POD活性[17];紫外吸收法测定CAT活性[17].

  • 试验数据均采用SAS软件Duncan's多重比较法(p<0.05) 进行统计分析.

  • 表 1可知,非盐条件下,接种AMF显著促进了芦笋植株的生长,株高、地上部和地下部鲜质量、干质量均显著高于对照;NaCl处理显著抑制了芦笋植株生长,其株高、地上部和地下部鲜质量、干质量分别比对照降低26.6%,43.5%,21.6%,32.8%和32.4%;接种AMF可以显著缓解盐胁迫对芦笋生长的抑制,接菌处理的株高、地上部和地下部鲜质量、干质量分别比未接菌处理增加15.4%,26.3%,17.2%,20.5%和20%.另外,NaCl处理下的菌根侵染率较对照降低18.2%,但菌根依存度升高21.4%.

  • 图 1所示,在非盐条件下,接种AMF可以显著提高芦笋拟叶的可溶性蛋白质量分数,处理后4,8 d分别较对照提高18%和26.4%;NaCl处理使芦笋拟叶可溶性蛋白质量分数增加,处理后4,8 d分别较对照增加66.3%和83.5%;接种AMF可以显著提高盐胁迫下芦笋拟叶的可溶性蛋白质量分数,与单纯NaCl处理相比,处理后4,8 d分别提高了52%和40.1%.

  • 图 2可知,在非盐条件下,接种AMF与不接菌对照相比,芦笋拟叶的MDA质量分数没有显著差异;盐胁迫使芦笋拟叶MDA质量分数显著升高,处理后4,8 d分别较对照提高86.3和107.7%;接种AMF可以降低盐胁迫下芦笋拟叶的MDA质量分数,与单纯NaCl处理相比,接种AMF处理在4,8 d的MDA质量分数分别降低17.9%和15.7%.电解质渗透率的变化趋势与MDA相似,盐胁迫下,接种AMF处理的MDA质量分数在4,8 d时分别比单纯NaCl处理降低15.3%和15.1%.表明盐胁迫下接种AMF使芦笋拟叶MDA质量分数降低,膜脂过氧化程度减轻,细胞质膜因盐胁迫引起的伤害程度减弱,从而提高了植株对盐害的抵抗能力.

  • 图 3可以看出,非盐条件下,接种AMF可显著提高芦笋拟叶的SOD,POD和CAT活性,处理后8 d分别较对照提高47.9%,17.3%和7%;NaCl处理使芦笋拟叶SOD,CAT活性降低,处理后8 d的SOD,CAT活性分别较对照降低34.6%和33%,而NaCl处理使芦笋拟叶POD活性升高,处理后8 d的POD活性比对照增加56%;接种AMF可以显著提高盐胁迫下芦笋拟叶的SOD,POD和CAT活性,与单纯NaCl处理相比,处理8 d后植株拟叶的SOD,POD和CAT活性分别增加65.5%,10.3%和26.2%.

  • 盐胁迫导致植物生长发育受阻,甚至死亡[18-20].在本研究中,NaCl处理使芦笋植株的株高、地上部和地下部的鲜质量、干质量均显著降低,严重抑制了芦笋的生长. AMF在盐胁迫下对植物生长的促进作用已有大量报道[12, 14, 16],本试验也得到类似的结果,接种AMF促进了芦笋植株在盐胁迫下的生长,株高、地上部和地下部鲜质量、干质量均显著提高.本试验还发现盐胁迫抑制了芦笋菌根侵染率,但菌根依存度较非盐条件下升高,这与COPEMAN[21]的研究结果相一致,由此说明,与正常生长条件相比,盐胁迫下接种AMF对芦笋植株的促生作用更显著.

    已有研究表明,可溶性蛋白作为一种重要的渗透调节物质,在植物逆境生理中具有重要作用,在盐胁迫下,植物体内可溶性蛋白迅速积累,从而维持体内的水分平衡、调节细胞内渗透势等[22]. Huang Z等[23]认为,在盐胁迫下,接种AMF可以促进番茄可溶性蛋白积累、提高细胞液浓度,从而提高其耐盐性.本试验中NaCl处理下,芦笋拟叶可溶性蛋白质量分数显著升高,且接种AMF可以使NaCl处理下可溶性蛋白质量分数进一步提高,这与韩冰等[16]在黄瓜上的研究结果相一致.另外,盐胁迫会造成植株细胞质膜的结构和功能受到伤害,导致细胞膜透性增大、细胞内电解质外渗[24],本试验中NaCl处理下芦笋拟叶电解质渗透率显著升高,而接种AMF可以使盐胁迫下电解质渗透率降低.由此说明在盐胁迫下,接种AMF可以通过进一步提高芦笋体内可溶性蛋白质量分数来进行渗透调节,降低电解质渗透率,从而缓解盐胁迫造成的伤害.

    盐迫会引起植物体内活性氧的积累,使细胞膜中不饱和脂肪酸发生过氧化反应形成MDA,MDA质量分数的多少能够反映细胞膜脂过氧化作用强弱和质膜破坏程度[16],本试验结果显示盐胁迫下芦笋拟叶中MDA质量分数显著升高.在盐胁迫条件下,植物体内清除活性氧的抗氧化酶活性在不同作物上表现不同,韩冰等[16]报道,黄瓜幼苗经盐胁迫后,其SOD,POD和CAT活性升高;程勋东等[22]的研究认为,辣椒幼苗在盐胁迫下,其SOD,POD活性升高,CAT活性下降.本试验研究发现NaCl处理下芦笋拟叶的SOD和CAT活性下降,POD活性升高,说明盐迫下芦笋细胞清除活性氧的能力下降,导致细胞内活性氧自由基的产生与清除之间的平衡被打破,加速了膜脂的过氧化程度.已有研究发现,AMF可以提高逆境条件下作物的SOD,POD和CAT活性[25-27].本研究结果同样表明,接种AMF可以大幅提高NaCl处理下芦笋拟叶的SOD,POD和CAT活性,降低MDA质量分数,能够更有效地清除活性氧,降低质膜过氧化程度,维持细胞膜的完整性.

参考文献 (27)

目录

/

返回文章
返回