留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类舌状绦虫传染病模型及其性态分析

上一篇

下一篇

邓连康, 刘贤宁. 一类舌状绦虫传染病模型及其性态分析[J]. 西南大学学报(自然科学版), 2017, 39(5): 106-112. doi: 10.13718/j.cnki.xdzk.2017.05.016
引用本文: 邓连康, 刘贤宁. 一类舌状绦虫传染病模型及其性态分析[J]. 西南大学学报(自然科学版), 2017, 39(5): 106-112. doi: 10.13718/j.cnki.xdzk.2017.05.016
Lian-kang DENG, Xian-ning LIU. Performance Analysis of a Ligulaosis Model[J]. Journal of Southwest University Natural Science Edition, 2017, 39(5): 106-112. doi: 10.13718/j.cnki.xdzk.2017.05.016
Citation: Lian-kang DENG, Xian-ning LIU. Performance Analysis of a Ligulaosis Model[J]. Journal of Southwest University Natural Science Edition, 2017, 39(5): 106-112. doi: 10.13718/j.cnki.xdzk.2017.05.016

一类舌状绦虫传染病模型及其性态分析

  • 基金项目: 国家自然科学基金项目(11271303)
详细信息
    作者简介:

    邓连康(1992-),男,重庆开州人,硕士研究生,主要从事动力系统的研究 .

    通讯作者: 刘贤宁,教授,博士研究生导师
  • 中图分类号: O175.13

Performance Analysis of a Ligulaosis Model

  • 摘要: 以舌状绦虫病的传播为背景,建立并分析了一类含有SI传染病仓室的食饵—捕食者系统模型.首先,证明了系统解的正性和有界性;其次,计算出了模型的基本再生数和分析了平衡点存在的条件;然后,证明了种群灭绝平衡点是不稳定的,并给出了仅易感食饵种群存在平衡点局部渐近稳定的条件和易感食饵和捕食者种群共存平衡点局部渐近稳定的条件;最后,通过构造Lyapunov函数,得出了仅易感食饵种群存在平衡点和易感食饵与捕食者种群共存平衡点的全局渐近稳定性.
  • 加载中
  • [1] doi: https://www.researchgate.net/publication/256802645_Modeling_and_analysis_of_the_transmission_of_Echinococcosis_with_application_to_Xinjiang_Uygur_Autonomous_Region_of_China WANG K, ZHANG X L, JIN Z, et al. Modeling and Analysis of the Transmission of Echinococcosis with Application to XinJiang Uygur Autonomous Region of China[J]. Journal of Theoretical Biology, 2013, 333(S3): 78-90.
    [2] HADELER K P, FREEDMAN H I. Predator-Prey Populations with Parasitic Infection[J]. Journal of Mathematical Biology, 1989, 27(6): 609-631. doi: 10.1007/BF00276947
    [3] HSIEH Y H, HSIAO C K. Predator-Prey Model with Disease Infection in Both Populations[J]. Mathematical Medicine and Biology, 2008, 25(3): 247-266. doi: 10.1093/imammb/dqn017
    [4] DIEKMANN O, HEESTERBEEK J A P, METZ J A J. On the Definition and the Computation of the Basic Reproduction Ratio R0 in Models for Infectious Diseases in Heterogeneous Populations[J]. Journal of Mathematical Biology, 1990, 28(4): 365-382.
    [5] DIEKMANN O, HEESTERBEEK J A P, ROBERT M G. The Construction of Next Generation Matrices for Compartmental Epidemic Models[J]. Journal of Royal Society Interface, 2010, 7(47): 873-885. doi: 10.1098/rsif.2009.0386
  • 加载中
计量
  • 文章访问数:  884
  • HTML全文浏览数:  480
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-09-17
  • 刊出日期:  2017-05-20

一类舌状绦虫传染病模型及其性态分析

    通讯作者: 刘贤宁,教授,博士研究生导师
    作者简介: 邓连康(1992-),男,重庆开州人,硕士研究生,主要从事动力系统的研究
  • 西南大学 数学与统计学院,重庆 400715
基金项目:  国家自然科学基金项目(11271303)

摘要: 以舌状绦虫病的传播为背景,建立并分析了一类含有SI传染病仓室的食饵—捕食者系统模型.首先,证明了系统解的正性和有界性;其次,计算出了模型的基本再生数和分析了平衡点存在的条件;然后,证明了种群灭绝平衡点是不稳定的,并给出了仅易感食饵种群存在平衡点局部渐近稳定的条件和易感食饵和捕食者种群共存平衡点局部渐近稳定的条件;最后,通过构造Lyapunov函数,得出了仅易感食饵种群存在平衡点和易感食饵与捕食者种群共存平衡点的全局渐近稳定性.

English Abstract

  • 近年关于鱼类感染舌状绦虫病的报道逐渐增加,舌状绦虫的成虫寄生在水鸟的肠子里并发育成熟.感染的水鸟腹部膨大,体型消瘦,羽毛逐渐脱落.发育成熟的舌状绦虫的受精卵随着水鸟的粪便排到水里,孵出的幼虫叫做钩球蚴,它在水里自由的游动,被水蚤吞食后,在水蚤体内发育成为原尾蚴.鱼类吞食了感染有原尾蚴的水蚤后,原尾蚴穿过鱼的肠壁到达体腔,发育为裂头蚴,感染的鱼类体型消廋,游动缓慢,容易死亡.若病鱼被水鸟捕食,裂头蚴在水鸟体内发育为成虫并产卵,又重新开始其繁殖.因为感染寄生虫会严重影响水鸟的身体状态,所以建模中假设其不具有捕食与繁殖能力.同样假设感染的鱼类不具有繁殖能力.因为是水鸟产生虫卵感染鱼类,类似于文献[1]的处理方式,水鸟感染鱼类使用线性感染函数.基于以上生物背景与假设,根据文献[2-3],建立如下寄生虫感染食饵-捕食者系统的模型:

    其中:S(t),I(t)分别是易感、感染的食饵(鱼类)种群在t时刻的密度;P1(t),P2(t)分别是易感、感染捕食者(水鸟)种群在t时刻密度;K为环境容纳量;λ为食饵种群内禀增长率;α为易感捕食者捕获易感食饵的平均捕获率,θ为易感捕食者捕获感染食饵而感染疾病的感染率;γ为易感捕食者捕获感染食饵的平均捕获率;e为食饵向捕食者的转化率;βP2S为感染易感捕食者被感染食饵所感染的感染函数;u1u2分别是易感、感染捕食者的死亡率,满足u1u2.

    引理1 若S(t),I(t),P1(t),P2(t)是系统(1) 的解,满足初值条件S(0)>0,I(0)>0,P1(0)>0,P2(0)>0,则系统的解具有正性且是一致最终有界的.

     1) 正性.若存在t1>0,使得S(t),I(t),P1(t),P2(t)在[0,t1)大于零,且S(t1),I(t1),P1(t1),P2(t1)至少有一个等于零.

    P2(t1)=0,由第四个方程有P2≥-u2P2,由比较定理,0=P2(t1)≥P2(0)e-u2t1>0,与假设矛盾,所以P2(t1)≠0.

    I(t1)=0,由第二个方程有I≥-dI-γIP1,同理$ {\rm{0}}{ = }I\left( {{t_1}} \right) \ge I\left( 0 \right){{\rm{e}}^{-\int_0^{_{{t_1}}} {d + \gamma {P_1}\left( s \right){\rm{d}}s} }} > 0 $,与假设矛盾,所以I(t1)≠0.

    P1(t1)=0,由第三个方程有P1≥-u1P2-θγIP1,同理,$ 0 = {P_1}({t_1}) \ge {P_1}\left( 0 \right){{\rm{e}}^{-\smallint _{_0}^{{t_1}}{u_1} + \theta \gamma I\left( s \right){\rm{d}}s}} > 0 $,与假设矛盾,所以P1(t1)≠0.

    S(t1)=0,由第二个方程有S≥-αP1S-βP2S,同理$ 0 = S({t_1}) \ge S\left( 0 \right){{\rm{e}}^{-\smallint _{_0}^{{t_1}}\alpha {P_1}\left( s \right) + \beta {P_2}\left( s \right){\rm{d}}s}} > 0$,与假设矛盾,所以S(t1)≠0.

    2) 有界性.由模型假设有S+IK.

    因为

    所以

    由比较定理

    所以当t→+∞时,

    引理1证完毕.

  • 系统(1) 一定存在两个边界平衡点E0(0,0,0,0) 与E1(K,0,0,0).从生物学角度,令

    R1>1时,系统存在食饵与捕食者共存的边界平衡点E(S,0,P1,0),其中

    下面讨论基本再生数与正平衡点的存在性,根据文献[4-5]下一代矩阵计算基本再生数方法可知

    可得基本再生数

    R2θγP1表示单位时间内一个I感染P1转化为P2的数量,$\frac{1}{{d + \gamma {{\bar P}_1}}} $表示I的存活时间,同样βS表示单位时间内一个P2感染S转化为I的数量,$ \frac{1}{{{u_2}}} $表示P2的存活时间.

    引理2 当R2>1时,系统存在唯一正平衡点E*(S*I*P1*P2*).

     由P2=0可得

    P1=0可得

    I=0与P2=0联立可得

    R2>1时,因为$ \frac{{\gamma {{\bar P}_1}}}{{d + \gamma {{\bar P}_1}}} < 1$,所以$ \frac{{\theta \beta \bar S}}{{{u_2}}} > 1 $,此时易得

    将以(4) 式代入S=0联立可得:

    其中

    R2>1时,C>0,方程有唯一正解I*,系统存在唯一正平衡点E*(S*I*P1*P2*),引理2证毕.

  • 在这一节中,我们将讨论当阈值R1R2在不同条件下时,边界平衡点E0(0,0,0,0),E1(K,0,0,0),E(S,0,P1,0) 的局部稳定性.系统的Jacobian矩阵为

    定理1 种群灭绝平衡点E0是不稳定的.

     在E0处的Jacobian矩阵

    则特征值为M1=λ>0,M2=-d<0,M3=-u1<0,M4=-u2<0,所以E0是不稳定的.定理1证毕.

    定理2 若R1<1,,仅易感食饵种群存在平衡点E1是局部渐近稳定的.

     在E1处的Jacobian矩阵

    则特征值为M1=-λ<0,M2=-d<0,M3=eαK-u1=u1(R1-1)<0,M4=-u2<0,所以E1是局部渐近稳定的,定理2证毕.

    定理3 若R1>1且R2<1,易感食饵与捕食者种群共存平衡点E是局部渐近稳定的.

     在E处的Jacobian矩阵

    利用矩阵分块理论,可得其特征方程为:

    R1>1,且R2<1时,方程的特征值满足

    所以E是局部渐近稳定的.定理3证毕.

  • 在这一节中,首先讨论E1的全局吸引性,结合定理2得到其全局渐近稳定性.然后通过构造Lyapunov函数得到E的全局渐近稳定性.

    引理3 若R1<1,则

     首先证明

    因为SKu1u2,可得

    P1(t),P2(t)的正性,易得

    下面证明

    因为

    所以对任意ε>0,存在tε>0,对任意ttε,都有$ {P_2}(t) < \frac{d}{{K\beta }}\frac{\varepsilon }{2} $.

    Iε(t)是方程

    在[tε,+∞)的解,所以

    易得

    所以存在t*tε,对任意tt*,有Iε(t)<ε,由比较定理,

    I(t)的正性与ε的任意性,易得

    引理3证完毕.

    定理4 若R1<1,仅易感食饵种群存在平衡点E1是全局渐近稳定的.

     由E1的局部稳定性及引理3知,只需证明当$ \mathop {\lim }\limits_{t \to + \infty } {S}\left( t \right) = K $.因为

    所以对任意ε>0,存在tε>0,对任意ttε,都有I(t)<εP1(t)<εP2(t)<ε,联立SK有:

    其中A=λ+βK+αK,令Sε(t)是方程

    在[tε,+∞)上满足Sε(tε)=S(tε)的解,Sε(t)有两个平衡点

    所以

    由比较定理易得

    因为ε是任意的,可得

    定理4证毕.

    定理5 当R1>1,$ \frac{{\theta \gamma {{\bar P}_1}}}{{ed}} + \frac{{\lambda \bar S}}{{dK}} < 1$$ \frac{{e\beta \bar S}}{{{u_2}}} < 1 $时,易感食饵与捕食者种群共存平衡点E是全局渐近稳定的.

     构造Lyapunov函数V(t)

    t求导可得

    SP1代入化简可得

    $ \frac{{\theta \gamma {{\bar P}_1}}}{{ed}} + \frac{{\lambda \bar S}}{{dK}} < 1 $$ {\rm{ }}\frac{{e\beta \bar S}}{{{u_2}}} < 1 $时,$\dot V\left( t \right) < 0 $,所以E是全局渐近稳定的.定理5证毕.

  • 由定理4可知,若R1<1,E1是全局渐近稳定的.由$ {R_1} = \frac{{e\alpha K}}{{{u_1}}} $可知,R1关于α单调递增,对于专业的养殖业而言,降低鱼类感染疾病的数量需要使得α的值尽可能小,可以采取驱赶鱼塘附近鸟类的方法.

    R2<1时,正平衡点E*不存在,E局部渐近稳定.而定理5中E是全局渐近稳定的条件为:当R1>1,B1<1,B2<1,此时

    通过一些数值模拟,我们猜测当R2<1时,E是全局渐近稳定的.显然B1关于γ单调递增,而B2关于β单调递增,可以通过减小γβ的方式控制疾病传播.例如:将因感染舌状绦虫而死亡的裸鲤打捞起来之后填埋(使γ减小);在新鱼塘开始养殖之前用生石灰撒入鱼塘中,使鱼塘中的虫卵死亡(使β减少).

参考文献 (5)

目录

/

返回文章
返回