-
本文研究如下一类带Hardy-Sobolev临界指数的Kirchhoff方程:
其中, a>0, b>0, Ω是$\mathbb{R}$3中的一个有界光滑区域, 且0∈Ω. Sobolev空间H01(Ω)中的范数为
当a=1, b=0, f (x, u)=0时, 方程(1) 已被广泛研究, 文献[1]得到了其正解的存在性.当a>0, b≥0时, 方程(1) 为Kirchhoff方程.近年来, Kirchhoff方程引起了许多学者的兴趣, 文献[2-5]得到了很多有关Kirchhoff方程的临界指数正解的存在性结论.但至今类似方程(1) 的带Hardy-Sobolev临界指数的奇异Kirchhoff方程仍未被研究.受到文献[1, 4]的启发, 本文将研究方程(1) 正解的存在情况.我们定义I为方程(1) 对应的能量泛函, 即
其中u±=max{± u, 0}, F (x, u)为f (x, u)的原函数, 记
如果u∈H01(Ω)且u>0, 并满足
我们称u是方程(1) 的正解.
本文主要的结果是:
定理1 假设a>0, 0<b<A-2, 且f满足条件(f1), (f2):
(f1) f∈C (Ω×$\mathbb{R}$+, $\mathbb{R}$+)且$\mathop {{\rm{lim}}}\limits_{t \to {0^ + }} $ $\frac{{f(x, t)}}{{{t^3}}}$=0, 当x∈Ω时, 一致地有$\mathop {{\rm{lim}}}\limits_{t \to { + ^\infty }} $ $\frac{{f(x, t)}}{{{t^5}}}$=0成立;
(f2)存在常数ρ, ρ>4, 使得对所有x∈Ω, t∈$\mathbb{R}$+\{0}, 有0<ρF (x, t)≤f (x, t) t成立.
此时, 方程(1) 至少有一个正解.
Existence of Positive Solutions for Kirchhoff Type Problems with Hardy-Sobolev Critical Exponents
-
摘要: 利用变分原理和山路引理研究一类带Hardy-Sobolev临界指数的Kirchhoff方程, 得到了该方程正解的存在性.
-
关键词:
- Kirchhoff方程 /
- Hardy-Sobolev临界指数 /
- 山路引理 /
- 正解
Abstract: The variational method and the mountain pass lemma are used to study a class of Kirchhoff type problems with critical weighted Hardy-Sobolev exponents, and the existence and multiplicity of their positive solutions are obtained. -
[1] GHOUSSOUB N, KANG X S. Hardy-Sobolev Critical Elliptic Equations with Boundary Singularities [J]. Ann I H Poincaré-AN, 2004, 21(6):767-793. doi: 10.1016/j.anihpc.2003.07.002 [2] LEI C Y, LIAO J F, TANG C L. Multiple Positive Solutions for Kirchhoff Type of Problems with Singularity and Critical Exponents [J]. J Math Anal Appl, 2015, 421:521-538. doi: 10.1016/j.jmaa.2014.07.031 [3] LIU X, SUN Y J. Multiple Positive Solutions for Kirchhoff Type Problems with Singularity [J]. Commun Pure Appl Anal, 2013, 12:721-733. [4] NAIMEN D. The Critical Problem of Kirchhoff Type Elliptic Equations in Dimension Four [J]. J Differential Equations, 2014, 257(4):1168-1193. doi: 10.1016/j.jde.2014.05.002 [5] doi: https://www.researchgate.net/publication/265705177_Existence_and_multiplicity_of_solutions_for_Kirchhoff_type_problem_with_critical_exponent XIE Q L, WU X P, TANG C L. Existence and Multiplicity of Solutions for Kirchhoff Type Problem with Critical Exponent [J]. Commun Pure Appl Anal, 2013, 12(6):706-713. [6] KANG D S, PENG S J. Positive Solutions for Singular Critical Elliptic Problems [J]. Appl Math Lett, 2005, 17(4):411-416. [7] GHOUSSOUB N, YUAN C. Multiple Solutions for Quasi-Linear PDEs Involving the Critical Sobolev and Hardy Exponents [J]. Trans Amer Math Soc, 2000, 352(12):5703-5743. doi: 10.1090/S0002-9947-00-02560-5 [8] RUDIN W. Real and Complex Analysis [M]. New York:McGraw-Hill, 1966. [9] RABINOWITZ P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [M]. Providence, RI:American Mathematical Society, 1985.
计量
- 文章访问数: 906
- HTML全文浏览数: 485
- PDF下载数: 52
- 施引文献: 0