-
STAT5最初是从动物乳腺组织中分离鉴定出来的一种生长因子,发现它与生长激素作用有关,具有特定的生长激素结合序列,并将其命名为MGF因子[1].目前在哺乳动物中发现并已鉴定出的STATs蛋白家族成员共有7个,包括STAT1,STAT2,STAT3,STAT4,STAT5a和STAT5b,STAT6[2-5]等,其中STAT5蛋白由STAT5a和STAT5b基因编码,两者均为胞内信号传导因子,受酪氨酸激酶及受体激活作用,发生磷酸化修饰,可形成同源或异源二聚体,调节靶基因的表达,广泛参与乳腺细胞增殖、分化和凋亡[6-7]. STAT5蛋白具有7个功能结构域,按照结构和功能依次可划分为氨基端结构域(NH2 Domain,ND)[8-9]、卷曲结构(Coiled-coiled Domain,CCD)[10]、DNA结合结构域(DNA binding Domain,DBA)[11-12]、连接结构域(Link Domain)、SH2结构域(Src-homology Domain)[13-14]、转录激活结构域(Transcription Activation Domian,TAD)[15]及羧基端(COOH Domain,CA)[16-17]. STAT5a和STAT5b基因在转录调控功能上的差异主要由其基因调控元件所决定[18-20].
PRL作用下的JAK-STAT5通路对于乳腺生长、发育和泌乳具有重要的作用,STAT5a和STAT5b基因可以在不同类型乳腺细胞中通过内源性表达促进细胞增殖和乳蛋白合成[21-23]. Nelson等[24]分析STAT5a和STAT5b基因在染色体中的位置时发现,STAT5结合位点在基因组中比较广泛,这些碱基序列通常位于基因的内含子区,虽然STAT5a和STAT5b基因具有共同的靶点,但其表达水平不同,两者在启动子区存在较大差异,进而影响靶基因的表达,说明STAT5a和STAT5b蛋白在影响不同类型细胞增殖中的行为并不相同.对奶牛STAT5a基因多态性的研究表明,奶牛乳腺组织中,STAT5a信号通路受催乳素激活和调节,可作为乳蛋白合成的主要通路,STAT5a基因的突变会导致产生3种不同的基因型,即AA/GG/AG基因型,这些基因型和奶牛的产奶性状相关联,直接影响奶牛泌乳量及其品质的改变,由此推断STAT5a似乎是奶牛泌乳能力的标志[25-26].因此,对STAT5a和STAT5b基因表达及调控元件的挖掘分析,可以进一步了解两者在乳腺发育和泌乳过程中的功能.
翟磊等[27]分析了不同泌乳阶段和产奶水平对奶牛淋巴细胞凋亡的影响,但目前尚无关于水牛STAT5基因克隆及其功能的研究报道.本研究以广西本地水牛为研究对象,旨在克隆并分析水牛STAT5a和STAT5b基因启动子序列,通过构建双荧光素酶报告载体,并在水牛乳腺上皮细胞(BMECs)中分析PRL对STAT5a和STAT5b基因启动子活性的影响.研究结果可为进一步研究STAT5a和STAT5b基因在水牛乳腺发育和泌乳过程中的表达及功能奠定基础.
Cloning and Activity Analysis of Buffalo STAT5a and STAT5b Promoters
-
摘要: 为了解转录激活与信号转导因子5(STAT5)在水牛乳腺发育及泌乳生理中的功能,对水牛STAT5a和STAT5b基因的5′调控区启动子序列进行了克隆,并比较其活性.根据GenBank已公布的牛STAT5a和STAT5b基因序列设计特异性引物,以广西本地水牛乳腺组织基因组DNA为模板,通过PCR法分别扩增不同长度STAT5a和STAT5b基因启动子片段并进行生物信息学分析.结果表明:克隆得到的水牛STAT5a基因启动子片段(P1和P2)大小是500 bp,700 bp,STAT5b基因启动子片段(P3,P4和P5)大小是500 bp,800 bp,1 500 bp.在线分析结果显示,仅P2片段中存在高甲基化位点,且富含SP1,AP2等转录因子结合位点.将构建的不同长度启动子片段分别连入pGL3-Basic载体,分别转染水牛乳腺上皮细胞,检测荧光素酶表达水平.与未转染组相比,P1~P5质粒转染组的荧光素酶比值均显著提高(p<0.05);添加5 mg/mL质量浓度催乳素(PRL)处理乳腺上皮细胞,P3质粒转染组的荧光素酶比值显著高于其他各组(p<0.05).以上结果表明,水牛STAT5a和STAT5b基因启动子活性均受到PRL调节,两者表达水平在水牛乳腺上皮细胞中不同,且STAT5b基因表达受PRL调控更为明显.Abstract: In order to understand the role of transcriptional activation and signal transduction factor 5 (STAT5) protein in the development of the mammary gland and lactation in buffalo, we cloned and analyzed the promoter sequences of 5'regulatory region of STAT5a and STAT5b genes and compared their activity. We designed specific primers according to the STAT5a and STAT5b gene sequences published in GenBank, used the mammary gland tissue genomic DNA of Guangxi local buffaloes as a template, amplified the promoter fragments of STAT5a and STAT5b genes by PCR, and made bioinformatics analysis of them. The size of the promoter fragments (P1 and P2) of the buffalo STAT5a gene was shown to be 500 bp and 700 bp, and the size of the promoter fragments (P3, P4 and P5) of the STAT5b gene was 500 bp, 800 bp and 1500 bp, respectively. The results of on-line analysis showed that there were hypermethylation sites in P2 fragment, which were also rich in transcription factor binding sites such as SP1 and AP2. The promoter fragments were inserted into pGL3-Basic vector, and transfected into buffalo mammary epithelial cells respectively. Detection of the expression level of luciferase showed that the ratio of luciferase in P1~P5 plasmid transfected group was significantly higher than that of in untransfected group (p < 0.05). By adding 5mg/mL PRL (prolactin) to mammary epithelial cells, the promoter activity was significantly higher in P3 than the other groups (p < 0.05). The above results showed that the promoter activity of the STAT5a and STAT5b genes was regulated by PRL, and such regulation was more obvious for STAT5b.
-
表 1 PCR引物序列
基因 引物序列(5′-3′) 长度/bp P1(STAT5a) F:AAGCTTAATTTTCGTTCTTAA ATC GT R:GGTACCCAGACACGCTTTCCT GT 500 P2(STAT5a) F:AAGCTTAATTTTCGTTCTTAA ATC GT R:GGTACCCCTTCTTCCTCTCCCCT 700 P3(STAT5b) F:AAGCTTCCTTTTAAAAGTAAAA R:GGTACCATCTGATGAAGGGCATCGC 500 P4(STAT5b) F:AAGCTTGTCTGAAAAGGTATCGTGGTA R:GGTACCATCTGATGAAGGGCATCGC 800 P5(STAT5b) F:AAGCTTTGATGTCTTGGGTGATCTC R:GGTACCATCTGATGAAGGGCATCGC 1 500 注:下划线为引入的酶切位点. 表 2 水牛STAT5a和STAT5b基因转录因子结合分析
基因 结合位点 分数 共有序列 信号序列 STAT5a SP1 0.860 419 NGGGGGCGGGGYN GGATGGAGGGAGG AP1 0.857 394 RSTGACTNMNW CGTGACTGGGA CREB 0.839 813 TGACGTMA AGACGTCG STAT 0.818 503 TTCCCRKAA TTCCCAACA P53 0.847 011 NGRCWTGYCY AAGCGTGTCT STAT5b AP1 0.848 609 RSTGACTNMNW TCTTAGCCACT CREB 0.788 588 NNGNTGACGYNN ACACCTCATTGT SP1 0.753 551 NGGGGGCGGGGYN GCAGCCACCCCAC YY1 0.786 370 NNNNNCCATNTWNNNWN AAGATTCAGTTTTAGTC -
[1] SCHMITT-NEY M, DOPPLER W, BALL R K, et al. Beta-Casein Gene Promoter Activity is Regulated By the Hormone-Mediated Relief of Transcriptional Repression and a Mammary-Gland-Specific Nuclear Factor [J]. Mol Cell Biol, 1991, 11(7): 3745-3755. doi: 10.1128/MCB.11.7.3745 [2] LEVY D E, DARNELL J J. Stats: Transcriptional Control and Biological Impact [J]. Nat Rev Mol Cell Biol, 2002, 3(9): 651-662. doi: 10.1038/nrm909 [3] COPELAND N G, GILBERT D J, SCHINDLER C, et al. Distribution of the Mammalian Stat Gene Family in Mouse Chromosomes [J]. Genomics, 1995, 29(1): 225-228. doi: 10.1006/geno.1995.1235 [4] IHLE J N. STATs: Signal Transducers and Activators of Transcription [J]. Cell, 1996, 84(3): 331-334. doi: 10.1016/S0092-8674(00)81277-5 [5] MIKLOSSY G, HILLIARD T S, TURKSON J. Therapeutic Modulators of STAT Signalling for Human Diseases [J]. Nat Rev Drug Discov, 2013, 12(8): 611-629. doi: 10.1038/nrd4088 [6] FURTH P A, NAKLES R E, MILLMAN S, et al. Signal Transducer and Activator of Transcription 5 as a Key Signaling Pathway in Normal Mammary Gland Developmental Biology and Breast Cancer [J]. Breast Cancer Res, 2011, 13(5): 220-233. doi: 10.1186/bcr2921 [7] GALLEGO M I, BINART N, ROBINSON G W, et al. Prolactin, Growth Hormone, and Epidermal Growth Factor Activate Stat5 in Different Compartments of Mammary Tissue and Exert Different and Overlapping Developmental Effects [J]. Dev Biol, 2001, 229(1): 163-175. doi: 10.1006/dbio.2000.9961 [8] XU X, SUN Y L, HOEY T. Cooperative DNA Binding and Sequence-Selective Recognition Conferred By the STAT Amino-Terminal Domain [J]. Science, 1996, 273(5276): 794-797. doi: 10.1126/science.273.5276.794 [9] BRAUNSTEIN J, BRUTSAERT S, OLSON R, et al. STATs Dimerize in the Absence of Phosphorylation [J]. J Biol Chem, 2003, 278(36): 34133-34140. doi: 10.1074/jbc.M304531200 [10] ZHANG T, KEE W H, SEOW K T, et al. The Coiled-Coil Domain of Stat3 is Essential for Its SH2 Domain-Mediated Receptor Binding and Subsequent Activation Induced By Epidermal Growth Factor and Interleukin-6 [J]. Mol Cell Biol, 2000, 20(19): 7132-7139. doi: 10.1128/MCB.20.19.7132-7139.2000 [11] SHUAI K, HORVATH C M, HUANG L H, et al. Interferon Activation of the Transcription Factor Stat91 Involves Dimerization Through SH2-Phosphotyrosyl Peptide Interactions [J]. Cell, 1994, 76(5): 821-828. doi: 10.1016/0092-8674(94)90357-3 [12] BOUCHERON C, DUMON S, SANTOS S C, et al. A Single Amino Acid in the DNA Binding Regions of STAT5A and STAT5B Confers Distinct DNA Binding Specificities [J]. J Biol Chem, 1998, 273(51): 33936-33941. doi: 10.1074/jbc.273.51.33936 [13] WAKAO H, GOUILLEUX F, GRONER B. Mammary Gland Factor (MGF) is a Novel Member of the Cytokine Regulated Transcription Factor Gene Family and Confers the Prolactin Response [J]. EMBO J, 1994, 13(9): 2182-2191. [14] KISSELEVA T, BHATTACHARYA S, BRAUNSTEIN J, et al. Signaling Through the JAK/STAT Pathway, Recent Advances and Future Challenges [J]. Gene, 2002, 285(1/2): 1-24. [15] ONISHI M, NOSAKA T, MISAWA K, et al. Identification and Characterization of a Constitutively Active STAT5 Mutant That Promotes Cell Proliferation [J]. Mol Cell Biol, 1998, 18(7): 3871-3879. doi: 10.1128/MCB.18.7.3871 [16] SOLDAINI E, JOHN S, MORO S, et al. DNA Binding Site Selection of Dimeric and Tetrameric Stat5 Proteins Reveals a Large Repertoire of Divergent Tetrameric Stat5a Binding Sites [J]. Mol Cell Biol, 2000, 20(1): 389-401. doi: 10.1128/MCB.20.1.389-401.2000 [17] GRIMLEY P M, DONG F, RUI H. Stat5a and Stat5b: Fraternal Twins of Signal Transduction and Transcriptional Activation [J]. Cytokine Growth Factor Rev, 1999, 10(2): 131-157. doi: 10.1016/S1359-6101(99)00011-8 [18] doi: https://www.sciencedirect.com/science/article/pii/S1357272503003881 BUITENHUIS M, COFFER P J, KOENDERMAN L. Signal Transducer and Activator of Transcription 5 (STAT5) [J]. The International Journal of Biochemistry & Cell Biology, 2004, 36(11): 2120-2124. [19] WYSZOMIERSKI S L, YEH J, ROSEN J M. Glucocorticoid Receptor/Signal Transducer and Activator of Transcription 5 (STAT5) Interactions Enhance STAT5 Activation By Prolonging STAT5 DNA Binding and Tyrosine Phosphorylation [J]. Mol Endocrinol, 1999, 13(2): 330-343. doi: 10.1210/mend.13.2.0232 [20] LIU X, ROBINSON G W, GOUILLEUX F, et al. Cloning and Expression of Stat5 and an Additional Homologue (Stat5b) Involved in Prolactin Signal Transduction in Mouse Mammary Tissue [J]. Proc Natl Acad Sci U S A, 1995, 92(19): 8831-8835. doi: 10.1073/pnas.92.19.8831 [21] doi: http://www.ncbi.nlm.nih.gov/pubmed/9414431 WATSON C J, BURDON T G. Prolactin Signal Transduction Mechanisms in the Mammary Gland: the Role of the Jak/Stat Pathway [J]. Rev Reprod, 1996, 1(1): 1-5. [22] MIYOSHI K, SHILLINGFORD J M, SMITH G H, et al. Signal Transducer and Activator of Transcription (Stat) 5 Controls the Proliferation and Differentiation of Mammary Alveolar Epithelium [J]. J Cell Biol, 2001, 155(4): 531-542. doi: 10.1083/jcb.200107065 [23] SULTAN A S, XIE J, LEBARON M J, et al. Stat5 Promotes Homotypic Adhesion and Inhibits Invasive Characteristics of Human Breast Cancer cells [J]. Oncogene, 2005, 24(5): 746-760. doi: 10.1038/sj.onc.1208203 [24] NELSON E A, WALKER S R, ALVAREZ J V, et al. Isolation of Unique STAT5 Targets By Chromatin Immunoprecipitation-Based Gene Identification [J]. J Biol Chem, 2004, 279(52): 54724-54730. doi: 10.1074/jbc.M408464200 [25] doi: http://europepmc.org/abstract/MED/15523155 BRYM P, KAMINSKI S, RUSC A. New SSCP Polymorphism Within Bovine STAT5A Gene and Its Associations with Milk Performance Traits in Black-and-White and Jersey Cattle [J]. J Appl Genet, 2004, 45(4): 445-452. [26] USMAN T, YU Y, LIU C, et al. Genetic Effects of Single Nucleotide Polymorphisms in JAK2 and STAT5A Genes on Susceptibility of Chinese Holsteins to Mastitis [J]. Mol Biol Rep, 2014, 41(12): 8293-8301. doi: 10.1007/s11033-014-3730-4 [27] 翟磊, 李改英, 朱建营, 等.不同泌乳阶段和产奶水平对奶牛淋巴细胞凋亡的影响[J].江西农业大学学报(自然科学版), 2016, 38(6): 1127-1134. doi: http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxnd201606018&dbname=CJFD&dbcode=CJFQ [28] doi: http://onlinelibrary.wiley.com/doi/10.1002/j.1460-2075.1995.tb07192.x/abstract GOUILLEUX F, PALLARD C, DUSANTER-FOURT I, et al. Prolactin, Growth Hormone, Erythropoietin and Granulocyte-Macrophage Colony Stimulating Factor Induce MGF-Stat5 DNA Binding Activity [J]. EMBO J, 1995, 14(9): 2005-2013. [29] WOOD T J, SLIVA D, LOBIE P E, et al. Mediation of Growth Hormone-Dependent Transcriptional Activation by Mammary Gland Factor/Stat 5 [J]. J Biol Chem, 1995, 270(16): 9448-9453. doi: 10.1074/jbc.270.16.9448 [30] QUELLE F W, WANG D, NOSAKA T, et al. Erythropoietin Induces Activation of Stat5 Through Association with Specific Tyrosines on the Receptor That Are Not Required for a Mitogenic Response [J]. Mol Cell Biol, 1996, 16(4): 1622-1631. doi: 10.1128/MCB.16.4.1622 [31] LIU X, GALLEGO M I, SMITH G H, et al. Functional Rescue of Stat5a-Null Mammary Tissue Through the Activation of Compensating Signals Including Stat5b [J]. Cell Growth Differ, 1998, 9(9): 795-803. [32] doi: https://www.sciencedirect.com/science/article/pii/S0378111902004213 AMBROSIO R, FIMIANI G, MONFREGOLA J, et al. The Structure of Human STAT5A and B Genes Reveals Two Regions of Nearly Identical Sequence and an Alternative Tissue Specific STAT5B Promoter [J]. Gene, 2002, 285(1/2): 311-318. [33] 郑宜文. 奶牛泌乳性状相关基因启动子甲基化分析[D]. 哈尔滨: 东北农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10224-1013207488.htm [34] 吴贤锋. 山羊STAT3和STAT5A基因SNPs、mRNA表达及甲基化对生产性能的影响[D]. 杨凌: 西北农林科技大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10712-1015332453.htm [35] doi: https://www.sciencedirect.com/science/article/pii/S0014579304001668 CRISPI S, SANZARI E, MONFREGOLA J, et al. Characterization of the HumanSTAT5A and STAT5B Promoters: Evidence of a Positive and Negative Mechanism of Transcriptional Regulation [J]. FEBS Letters, 2004, 562(1/3): 27-34.