-
植物叶面的微生物群落非常多样化,包括细菌、真菌、酵母等,这些微生物中的一些可能对植物有害,被称为病原体,而其他的可能因促进植物生长和发育对植物有益.微生物的活动是影响植物生长发育的关键因素[1-2].其中,细菌是叶面环境中最主要的微生物类群[3].研究发现,植物叶面细菌能产生激素促进植物生长、有助于减少化肥和农药投入、轻环境污染、对重金属产生耐受性和抗性,实现农业的可持续发展[4-7].例如:解淀粉芽孢杆菌在大田条件下对核盘菌引起的茎干枯萎病起到良好防治作用[8];苏云金芽孢杆菌也是植物叶际附生菌,可以保护植物免受草食昆虫的侵害[9];菌株D5/23T是一种很好的促植物生长菌,能产生植物生长激素和细胞激动素,并且能固定大气中的氮气,促进植物根和茎干生长,最终使不同的作物增加产量[10-12].
烟草作为经济作物和模式植物,叶面存在大量的微生物,这些菌群影响着烟草整个生育时期及后期的烘烤调制过程,对烟草品质的形成有着重要作用[13-15].而调制是烤烟生产中的重要环节.微生物在鲜烟叶调制过程中对烟叶产品的形成及其品质产生了不同的作用.其中,细菌作为烤烟调制中的主要微生物,研究者对其在烘烤过程中的作用进行了研究.研究发现,不同部位烟叶烘烤过程中的优势微生物种类不完全相同,优势细菌属11种,其中棒杆菌属(Corynebacterium)、肠杆菌属(Enterobacter)、芽孢杆菌属(Arthrobacter)、泛菌属(Pantoea)出现频率最高[16].烟叶在烘烤进程中,细菌种类一直在减少,从烘烤开始到结束,减少10~100倍[17-18].不同烘烤方式和烘烤条件下,细菌总量在烤烟烘烤开始后逐渐增多,到48 h时烟叶变黄前后达到最大,细菌种类随烘烤时间的增加而减少[19].某些微生物在烘烤过程中对烟叶的腐烂和烟叶有害成分含量的消长等方面有重要影响[16, 20-21].微生物在烟草烘烤阶段对烟叶中烟碱含量有一定的降解[22-24].到目前为止,大多数的研究都是关于发酵过程中的微生物,对于调制过程中的微生物,特别是细菌研究较少.对于调制过程中不同阶段细菌种属的多样性分析,能更好地促进有益细菌的利用,以用于烟草叶片的品质提高.然而前人分析微生物多样性的方法一般采用微生物平板纯培养方法、微平板分析方法、磷脂脂肪酸法以及DGGE等分子生物学方法,传统的方法只能分析可培养微生物,且存在误差,操作繁琐.
高通量测序技术对16S rDNA/18S rDNA/ITS等序列进行测序,能同时对样品中的优势物种、稀有物种及一些未知的物种进行检测,获得样品中的微生物群落组成以及相对丰度,在植物、土壤、肠道中广泛应用[25-28].本实验利用高通量测序技术对烘烤中烟叶细菌群落结构的多样性进行分析,旨在准确检测调制不同阶段细菌的种类.
Diversity Analysis of Bacterial Community Structure in the Curing Process of Flue-Cured Tobacco
-
摘要: 为了研究烤烟烘烤过程中细菌群落结构的多样性,以云烟87为材料,采用Miseq高通量测序技术,分析了不同烤房烘烤过程中细菌群落的结构及其变化.结果表明,A,B,C 3个烤房的OTU(Operational Taxonomic Units)大部分都是共有,B烤房独有OTU较少,C烤房独有OTU较多.通过分析各样本中细菌群落组成的相似性和差异性发现,芽孢杆菌(Bacillus)为3个烤房的优势菌群.部分细菌在烘烤前后期物种群落结构差异较大,如马赛菌属(Massilia)、根瘤菌属(Rhizobium)、寡养单胞菌属(Stenotrophomonas)、鞘氨醇单胞菌属(Sphingomonas)等.进一步主成分分析显示,烘烤前期和后期样本有比较明显的不同,细菌组成差异较大.该结果为进一步针对性地利用这些优势细菌以提高烘烤烟叶质量奠定了基础.Abstract: In order to study the diversity of bacterial community structure in the curing process of flue-cured tobacco, Miseq high-throughput sequencing was performed on the tobacco variety Yunyan 87. The results showed that most of the OUT (operational taxonomic units) in flue-curing rooms A, B and C shared similar characteristics. Of the three flue-curing rooms, flue-curing room B had the fewest unique OTU, while flue-curing room C had the most. Analysis of the similarities and differences among the bacterial population in various samples revealed that Bacillus was the dominant bacteria in flue-curing rooms A, B and C. Some bacteria, such as Marseille sp., Rhizobium, Stenotrophomonas and Sphingomonas, showed considerable differences in their community structure during the early and the late curing stages. Principal component analysis showed that the bacterial composition of the samples in the early and the late stages was obviously different. The above results have laid a foundation for improving the quality of flue cured tobacco leaves with these dominant bacteria.
-
Key words:
- flue-cured tobacco /
- bacteria /
- flue-cure /
- community structure .
-
表 1 3个烤房烘烤前、后期样本丰富度和多样性指数
样本 ace chao shannon simpson OTU A烤房烘烤前期 66 66 1.60 0.38 41 A烤房烘烤后期 79 63 2.11 0.24 46 B烤房烘烤前期 58 48 1.32 0.46 33 B烤房烘烤后期 56 45 1.85 0.30 36 C烤房烘烤前期 68 57 1.85 0.33 40 C烤房烘烤后期 65 62 2.39 0.21 51 -
[1] 雷丽萍, 郭荣君, 缪作清, 等.微生物在烟草生产中应用研究进展[J].中国烟草学报, 2006, 12(4): 47-51. doi: http://www.cnki.com.cn/Article/CJFDTotal-ZWYJ201502011.htm [2] 白洋, 钱景美, 周俭民, 等.农作物微生物组:跨越转化临界点的现代生物技术[J].中国科学院院刊, 2017, 32(3): 260-265. doi: http://mall.cnki.net/magazine/magadetail/KYYX201703.htm [3] 厉昌坤. 自然陈化过程中烤烟叶面微生物变化及应用研究[D]. 北京: 中国农业科学院, 2008. [4] OMER Z S, TOMBOLINI R, GERHARDSON B. Plant Colonization by Pink-Pigmented Facultative Methylotrophic Bacteria (PPFMs) [J]. FEMS Microbiology Ecology, 2004, 47(3): 319-326. doi: 10.1016/S0168-6496(04)00003-0 [5] SANDHU A, HALVERSON L J, BEATTIE G A. Bacterial Degradation of Airborne Phenol in the Phyllosphere [J]. Environmental Microbiology, 2007, 9(2): 383-392. doi: 10.1111/emi.2007.9.issue-2 [6] 潘建刚, 呼庆, 齐鸿雁, 等.叶际微生物研究进展[J].生态学报, 2011, 31(2): 583-592. doi: http://d.wanfangdata.com.cn/Periodical_stxb201102033.aspx [7] 江春玉. 植物促生细菌提高植物对铅、镉的耐受性及富集效应研究[D]. 南京: 南京农业大学, 2008. [8] FERNANDO W G D, NAKKEERAN S, ZHANG Y, et al. Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on Canola Petals [J]. Crop Protection, 2007, 26(2): 100-107. doi: 10.1016/j.cropro.2006.04.007 [9] SMITH R A, COUCHE G A. The Phylloplane as a Source of Bacillus thuringiensis Variants [J]. Applied and Environmental Microbiology, 1991, 57(1): 311-315. [10] RUPPEL S, HECHT-BUCHHOLZ C, REMUS R, et al. Settlement of the Diazotrophic, Phytoeffective Bacterial Strain Pantoea Agglomerans on and Within Winter Wheat: An Investigation Using ELISA and Transmission Electron Microscopy [J]. Plant and Soil, 1992, 145(2): 261-273. doi: 10.1007/BF00010355 [11] RUPPEL S, MERBACH W. Effect of Ammonium and Nitrate on 15N2-Fixation of Azospirillum spp. and Pantoea Agglomerans in Association with Wheat Plants [J]. Microbiological Research, 1997, 152(4): 377-383. doi: 10.1016/S0944-5013(97)80055-9 [12] doi: http://agris.fao.org/agris-search/export!exportTopEndNoteXML.action?agrovocString=Q+fever&onlyFullText=false SCHOLZ C, REMUS, R, ZLELKE, R. Development of DAS-ELISA for Some Selected Bacteria from the Rhizosphere [J]. Zbl Mikrobiol, 1991, 146: 197-207. [13] 李梅云.微生物改善烟叶品质研究进展[J].工业微生物, 2006, 36(3): 43-48. doi: https://www.qikan.com.cn/article/xdny201409195.html [14] 周芳芳, 周丽娟, 詹军, 等.烟草功能菌的研究进展[J].河南农业科学, 2013, 42(12): 6-10, 15. doi: 10.3969/j.issn.1004-3268.2013.12.002 [15] 刘建军.微生物肥料对烟叶品质的影响[J].重庆与世界, 2016(11): 32-34, 51. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahnykx201533064 [16] 宫长荣, 程龙, 宋朝鹏, 等.烤烟烘烤过程中微生物的动态变化[J].中国烟草科学, 2010, 31(1): 44-46, 52. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyckx201001012 [17] doi: https://www.researchgate.net/publication/288897223_Evolution_of_Tobacco-Specific_Nitrosamines_and_Microbial_Populations_During_Flue-Curing_of_Tobacco_Under_Direct_and_Indirect_Heating/fulltext/5787b14808aedc252a9363e0/288897223_Evolution_of_Tobacco-Specific_Nitrosamines_and_Microbial_Populations_During_Flue-Curing_of_Tobacco_Under_Direct_and_Indirect_Heating.pdf MORIN A, PORTER A, RATAVICIUS A, et al. Evolution of Tobacco-Specific Nitrosamines and Microbial Populations During Flue-Curing of Tobacco Under Direct and Indirect Heating [J]. Beiträge Zur Tabakforschung, 2004, 21(1): 40-46. [18] 姚恒.烘烤对烟叶微生物种群的影响[J].安徽农业科学, 2010, 38(29): 16166-16168. doi: 10.3969/j.issn.0517-6611.2010.29.033 [19] 张树堂, 祝明亮, 杨雪彪.烘烤方式及烘烤条件对烤烟烘烤中细菌变化的影响[J].烟草科技, 2001(4): 42-43. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yckj200104018 [20] 祝明亮.烟草调制期间微生物研究进展[J].微生物学通报, 2008, 35(8): 1278-1281. doi: http://www.docin.com/p-525290444.html [21] WIERNIK A, CHRISTAKOPOULOS A, JOHANSSON L, et al. Effect of Air-Curing on the Chemical Composition of Tobacco [J]. Recent Advances in Tobacco Science, 1995(21): 39-80. [22] 张彦东, 罗昌荣, 王辉龙, 等.微生物降解烟碱研究应用进展[J].烟草科技, 2003(12): 3-7. doi: 10.3969/j.issn.1002-0861.2003.12.001 [23] GEISS V L, GREGORY C F, NEWTON R P, et al. Process for Reduction of Nicotine Content of Tobacca by Microbial Treatment: 4140136 [P]. United States Patent, 1979. [24] ENGLISH C F, BELL E J, BERGER A J. Isolation of Thermophiles from Broadleaf Tobacco and Effect of Pure Culture Inoculation on Cigar Aroma and Mildness [J]. Applied Microbiology, 1967, 15(1): 117-119. [25] LI L, SU Q, XIE B, et al. Gut Microbes in Correlation with Mood: Case Study in a Closed Experimental Human Life Support System [J]. Neurogastroenterology and Motility, 2016, 28(8): 1233-1240. doi: 10.1111/nmo.2016.28.issue-8 [26] CAI Zhi-qiang, MA Jiang-tao, WANG Jing, et al. Impact of the Novel Neonicotinoid Insecticide Paichongding on Bacterial Communities in Yellow Loam and Huangshi Soils [J]. Environmental Science and Pollution Research, 2016, 23(6): 5134-5142. doi: 10.1007/s11356-015-5733-7 [27] ZHU Ying, LV Guang-chao, CHEN Ying-long, et al. Inoculation of Arbuscular Mycorrhizal Fungi with Plastic Mulching in Rainfed Wheat: A Promising Farming Strategy [J]. Field Crops Research, 2017, 204: 229-241. doi: 10.1016/j.fcr.2016.11.005 [28] WANG Yao-yue, CAO Ping-hua, WANG Lei, et al. Bacterial Community Diversity Associated with Different Levels of Dietary Nutrition in the Rumen of Sheep [J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3717-3728. doi: 10.1007/s00253-017-8144-5 [29] 徐淑霞, 靳赛, 吴坤, 等.小麦表面微生物多样性研究[J].粮食储藏, 2004, 33(6): 41-43. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lscc200406012 [30] 陈泽斌, 李冰, 王定康, 等. Illumina MiSeq高通量测序分析核桃内生细菌多样性[J].江苏农业学报, 2015, 31(5): 1129-1133. doi: http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jsnyxb201505029 [31] WICHITRA L, PUNPEN H, SAMERCHAI C. Growth Inhibitory Properties of Bacillus subtilis Strains and Their Metabolites Against the Green Mold Pathogen (Penicillium digitatum Sacc.) of Citrus Fruit [J]. Postharvest Biology and Technology, 2008, 48(1): 113-121. doi: 10.1016/j.postharvbio.2007.09.024 [32] SWAIN M R, RAY R C. Biocontrol and other Beneficial Activities of Bacillus subtilis Isolated from Cowdung Microflora [J]. Microbiological Research, 2009, 164(2): 121-130. doi: 10.1016/j.micres.2006.10.009 [33] 王嫒媛, 段玉玺, 陈立杰. 根瘤菌在植物病害生物防治中的作用[C]. 中国植物病理学会2007年学术年会论文集, 2007: 398-403. [34] 王昀璐, 花日茂, 唐欣昀.寡养单胞菌在环境保护中的应用研究进展[J].安徽农业科学, 2010, 38(28): 15796-15797, 15800. doi: 10.3969/j.issn.0517-6611.2010.28.135 [35] 胡杰, 何晓红, 李大平, 等.鞘氨醇单胞菌研究进展[J].应用与环境生物学报, 2007, 13(3): 431-437. doi: http://www.cibj.com/oa/DArticle.aspx?type=view&id=1725 [36] TAKEUCHI M, SAKANE T, YANAGI M, et al. Taxonomic Study of Bacteria Isolated from Plants: Proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., and Sphingomonas mali sp. nov [J]. Int J Syst Bacteriol, 1995, 45(2): 334-341. doi: 10.1099/00207713-45-2-334 [37] ADHIKARI T B, JOSEPH C M, YANG G, et al. Evaluation of Bacteria Isolated from Rice for Plant Growth Promotion and Biological Control of Seedling Disease of Rice [J]. Canadian Journal of Microbiology, 2001, 47(10): 916-924. doi: 10.1139/w01-097