-
月季(Rosa hybrida)切花作为世界四大切花之首,年贸易额占世界切花总贸易额的32%[1].然而月季切花不耐贮运,发达国家采后损耗通常在20%,我国往往超过30%,有时甚至高达50%,造成巨大的经济损失[2].主要表现为月季花朵的不正常开放,如僵花、僵蕾,提前衰老等[3-5].因此,解析月季切花采后花朵衰老机制始终是国际热点.
目前,影响月季切花衰老的主要因素分为两大类,一类是外部因素,如光照、温度、机械损伤等;另一类是内部因素,如水分平衡、大分子物质代谢、生物膜透性变化以及内源植物激素变化等.月季瓶插期间,由于次生代谢产物积累以及病菌侵染,往往造成木质部导管堵塞,减少水分的吸收与运输,破坏水分平衡,最终加速花朵衰老[6].失水胁迫会显著提高月季萼片中乙烯生物合成酶基因RhACS1与RhACS2表达量,诱导乙烯大量合成[7].此外,在蛋白水平,月季通过精准地调控雌蕊中RhMPK6-RhACS1级联反应,进而诱导乙烯大量产生[8].同时,膜脂过氧化也是引起月季切花衰老的因素之一[9].细胞膜透性增加会加剧水分丧失,引起月季切花提前衰老[10].相反,抗坏血酸和β-胡萝卜素处理能够有效抑制月季切花的衰老进程并延长切花瓶插寿命,可能与提高细胞膜保护酶活性有关[11].
此外,月季花朵的衰老受植物激素调控.乙烯处理引起月季花朵加速开放,花朵开放期(2至4级)较对照的5 d缩短为3.0~3.4 d;然而,乙烯抑制剂1-MCP处理能显著延长花朵开放期,达到7.6~8.1 d[12].在分子水平,一个月季HD-Zip Ⅰ家族RhHB1转录因子介导了GAs、ABA和乙烯3种激素在月季衰老进程中的拮抗调节[13].总体来说,乙烯与ABA促进月季花朵的衰老,而细胞分裂素和赤霉素发挥延缓功能[14].
通常,当植物遭受病菌侵染时会特异诱导某些基因的表达,其中包括病程相关基因(PR).基于蛋白结构和功能特性,将PR蛋白划分为17不同的家族.其中,PR-10蛋白家族包括100多个成员,其开放阅读框(ORF)全长通常包含456至489 bp,编码151~162个氨基酸,具有一个保守的P-loop基序(GxGGxGxxK),定位于细胞质中[15].在前期工作中,我们证明了一个受月季花朵衰老显著诱导的PR10蛋白家族基因RhPR10.1,通过调控花朵内源细胞分裂素浓度,进而拮抗乙烯诱导的月季花朵衰老[16].然而,月季PR-10蛋白家族的其他成员是否也参与了花朵衰老调控仍然未知.本研究从月季花瓣中分离了另一个PR-10蛋白家族基因RhPR10.2,并对其蛋白特性及生物学功能进行了分析,以期为解析PR10蛋白家族基因调控月季花朵衰老的分子机制提供新的理论依据,为月季花朵品质改良分子育种提供基因储备.
Cloning and Biology Functional Characteristic of RhPR10.2 in Rose (Rosa hybrida)
-
摘要: 为解析月季PR-10家族基因RhPR10.2在月季花瓣衰老中的生物学功能,采用Real-Time PCR、RACE PCR、异源过表达、VIGS(病毒诱导的基因沉默)等生物技术方法,分析了月季RhPR10.2基因在月季不同开放阶段花瓣中的表达谱,克隆了RhPR10.2基因全长,构建了pSuper1300-RhPR10.2异源过表达载体以及pTRV2-RhPR10.2 VIGS载体.结果表明,RhPR10.2基因的表达受月季花瓣衰老显著诱导,其开放阅读框为483 bp,编码160个氨基酸,含有PR-10家族特有的P-loop基序;蛋白分子式为C796H1250N204O239S2,分子量为17 566.02,等电点(pI)为6.07;RhPR10.2蛋白与葡萄VvPR10.1亲缘关系最近;与拟南芥野生型植株(WT)相比,异源过表达RhR10.2基因的拟南芥T2代纯合子植株表现出显著延迟叶片衰老的表型,伴随着更高的叶绿素含量以及更低的离子渗透率;此外,与TRV2对照相比,沉默RhPR10.2基因的月季花瓣表现出加速衰老的表型,伴随着更高的离子渗透率以及衰老marker基因RhSAG12的表达.Abstract: In order to understand the role of PR-10 family gene RhPR10.2 in the regulation of rose petal senescence, real time PCR was used to explore the expression of RhPR10.2 in rose petals of different opening stages, RACE PCR was used for cloning the full length of RhPR10.2. In addition, pSuper1300-RhPR10.2 and pTRV2-RhPR10.2 vectors were constructed for the analysis of the biological function of RhPR10.2. The results showed that the expression of RhPR10.2 was significantly induced by rose petal senescence. Its open reading frame was 483 bp, encoding a protein of 160 amino acids. RhPR10.2 protein had a typical P-loop motif which was conserved in PR-10 protein family. The molecular formula of this protein was C796H1250N204O239S2, with a molecular weight of 17 566.02, and a theoretical pI of 6.07. Phylogenetic tree analysis suggested that RhPR10.2 had the highest similarity with Vitisvinifera VvPR10.1. To evaluate the biological role of RhPR10.2, transgenic arabidopsis (Arabidopsis thaliana) was observed. Compared with wild type (WT), RhPR10.2 transgenic T2 plants showed that the senescence of leaves was significantly delayed, accompanying with marked higher content of chlorophyll and significant lower ion leakage. On the contrary, compared with TRV2 control, RhPR10.2 gene silence markedly promoted rose petal senescence, accompaniying with significant higher ion leakage and senescence marker gene RhSAG12 expression.
-
Key words:
- rose (Rosa hybrida) /
- RhPR10.2 /
- gene silence /
- petal senescence .
-
表 1 引物序列
引物名称 序列(5'-3') GSP1 ATTGAAGGTGATGCTATCGGAGAC GSP2 TCAAGAGCACCAGCCACTACCATT GSP3 GTCTTTGTCAAGTCCATCAATCTG GSP4 AACGATTTCAGCACTCTTCACAGC GSP5 CAGCTCCTTAATCATCATCATGGGTG GSP6 GGCTTGGTACGATAGTGAAGGAAAT GSP7 GCTCTAGAATGGGTGTGTTCACTTATGAAACTG GSP8 CCAAGCTTTTAGTTGTAGGCCTCAGGGTTGGCC 注:下划线表示酶切位点. -
[1] LUO J, MAN, PEI H X, et al. A DELLA Gene, RhGAI1, Is ADirect Target of EIN3 and Mediates Ethylene-Regulated Rose Petal Cell Expansion via Repressing The Expression of RhCesA2[J]. J Exp Bot, 2013, 64(16):5075-5084. doi: 10.1093/jxb/ert296 [2] 高俊平, 孙自然, 周山涛.我国鲜切花远距离流通中减少损耗的基本途径[J].北京农业大学学报[J], 1995, 21(S1):84-88. doi: http://www.cqvip.com/QK/90547A/1995S1/6788968881995S1015.html [3] JIN J, SHAN N, MA N, et al. Regulation of AscorbatePeroxidase at The Transcript Level Is Involved in Tolerance to Postharvest Water Deficit Stress in The Cut Rose (Rosa hybrida L.) cv. Samantha[J]. Postharvest Biol Tec, 2006, 40(3):236-243. doi: 10.1016/j.postharvbio.2006.01.014 [4] MA N, TAN H, LIU X, et al. Transcriptional Regulation of Ethylene Receptor and CTR Genes Involved in Ethylene-Induced Flower Opening in Cut Rose (Rosa hybrida) cv. Samantha[J]. J Exp Bot, 2006, 57(11):2763-2773. doi: 10.1093/jxb/erl033 [5] TAN H, LIU X, MA N, et al. Ethylene-Influenced Flower Opening and Expression of Genes EncodingEtrs, Ctrs, and Ein3sin Two Cut Rose Cultivars[J]. Postharvest Biol Tec, 2006, 40(2):97-105. doi: 10.1016/j.postharvbio.2006.01.007 [6] 高俊平.观赏植物采后生理与技术[M].北京:中国农业大学出版社, 2002, 14-75. [7] LIU D, LIU X, MENG Y, et al. An Organ-Specific Role for Ethylene in Rose Petal Expansion during Dehydration and Rehydration[J]. J Exp Bot, 2013, 64(8):2333-2344. doi: 10.1093/jxb/ert092 [8] MENG Y, MA N, ZHANG Q, et al. Precise Spatio-Temporal Modulation of ACC Synthase by MPK6 Cascade Mediates the Response of Rose Flowers to Rehydration[J]. Plant J, 2014, 79(6):941-950. doi: 10.1111/tpj.12594 [9] MAYAK S, LEGGE RL, THOMPSON JE. Superoxide Radical Production by Microsomal Membranes from Senescing Carnation Flowers:An Effect of Membrane Fluidity[J]. Phytochemistry, 1983, 22(6):1375-1380. doi: 10.1016/S0031-9422(00)84018-2 [10] 白双义, 刘青林.月季切花不同品种衰老征兆及瓶插寿命的比较[J].园艺学报, 2001, 28(4):364-366. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyxb200104021 [11] 李永红, 张常青, 谭辉, 等.抗氧化剂对月季切花失水胁迫耐性和SOD、POD活性的影响[J].中国农业大学学报, 2003, 8(5):14-17. doi: http://www.cnki.com.cn/Article/CJFDTotal-XBNX200505021.htm [12] MA N, CAI L, LU W J, et al. Exogenous Ethylene Influences Flower Opening of Cut Roses (Rosa hybrida) by Regulating The Genes Encoding Ethylene Biosynthesis Enzymes[J]. Science in China Series C, 2005, 48(5):434-444. doi: 10.1360/062004-37 [13] LV P T, ZHANG C Q, LIU J, et al. RhHB1 Mediates The Antagonism of Gibberellins to ABA and Ethylene during Rose (Rosa hybrida) Petal Senescence[J]. Plant J, 2014, 78(4):578-590. doi: 10.1111/tpj.12494 [14] doi: http://www.ncbi.nlm.nih.gov/pubmed/22983713 ROGERS H J. From Models to Ornamentals:How Is Flower Senescence Regulated?[J]. Plant MolBiol, 2013, 82(6):563-574. [15] HOFFMANN-SOMMERGRUBER K, VANEK-KREBITZ M, RADAUER C, et al. Genomic Characterization of Members of The Bet v 1 Family:Genes Coding For Allergens and Pathogenesis-Related Proteins Share Intron Positions[J]. Gene, 1997, 197(1-2):91-100. doi: 10.1016/S0378-1119(97)00246-1 [16] WU L, MA N, JIA Y C, et al. An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content[J]. Plant Physiol, 2016, 173(1), pp. 01064. [17] doi: https://www.researchgate.net/publication/15664135_A_Modified_Hot_Borate_Method_Significantly_Enhances_the_Yield_of_High-Quality_RNA_from_Cotton_Gossypium_hirsutum_L WAN C, WILKINS T A. A Modified Hot Borate Method Significantly Enhances The Yieldof High-Quality RNA From Cotton (Gossypiumhirsutum L.)[J]. AnalChem, 1994, 223(1):7-12. [18] CLOUGH S H, BENT A F. Floral Dip:ASimplified Method forAgrobacterium-Mediated Transformation ofArabidopsis thaliana[J]. Plant J, 2010, 16(6):735-743. [19] 赵佳福, 苟维胜, 段志强, 等.从江香猪LMF1基因的克隆、亚细胞定位及组织表达研究[J].西南大学学报(自然科学版), 2017, 39(12):38-43. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201712006&flag=1 [20] 李胜, 黄时海, 张艳, 等.水牛STAT5a和STAT5b基因启动子克隆及其活性分析[J].西南大学学报(自然科学版), 2018, 40(1):1-8. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201801001&flag=1 [21] WALLTER M H, LIU J, WUNN J, et al. Bean Ribonuclease-Like Pathogenesis-Related Protein Genes (Yprl0) Display Complex Patterns of Developmental, Dark-Induced and Exogenous-Stimulus-Dependent Expression[J]. Eur. J. Biochem, 2010, 239(2):281-293. [22] PASTERNAK O, BUJACZ G D, FUJIMOTO Y, et al. Crystal Structure of Vigna Radiata Cytokinin-Specific Binding Protein in Complex with Zeatin[J]. Plant Cell, 2006, 18(10):2622-2634. doi: 10.1105/tpc.105.037119 [23] LIU J, EKRAMODDOULLAH A K M. The Family 10 of Plant Pathogenesis-Related proteins:Their Structure, Regulation, and Function in Response to Biotic and Abiotic Stresses[J]. PhysiolMol Plant P, 2006, 68(1):3-13. [24] doi: https://link.springer.com/content/pdf/10.1007%2FBF00195733.pdf BUFE A, SPANGFORT M D, KAHLERT H, et al. The Major Birch Pollen Allergen, Bet v 1, Shows Ribonuclease Activity[J]. Planta, 1996, 199(3):413-415. [25] CHOI D S, HWANG I S, HWANG B K. Requirement of The Cytosolic Interaction Between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for Cell Death and Defense Signaling in Pepper[J]. Plant Cell, 2012, 24(4):1675-1690. doi: 10.1105/tpc.112.095869 [26] XU T, ZHAO X, JIAO Y, et al. A Pathogenesis Related Protein, VpPR-10.1, From Vitis Pseudoreticulata:An Insight of Its Mode of Antifungal Activity[J]. Plos One, 2014, 9(4):e95102. doi: 10.1371/journal.pone.0095102 [27] SRIVASTAVA S, EMERY R J N, KUREPIN L V, et al. PeaPR 10.1Is ARibonucleaseand Its Transgenic Expression Elevates CytokininLevels[J]. Plant Growth Regul, 2006, 49(1):17-25. doi: 10.1007/s10725-006-0022-6 [28] SRIVASTAVA S, EMERY R J N, RAHMAN M H, et al. A Crucial Role for Cytokininsin Pea ABR17-Mediated Enhanced Germination and Early Seedling Growth of Arabidopsis thaliana under Saline and Low-Temperature Stresses[J]. J Plant Growth Regul, 2007, 26(1):26-37. doi: 10.1007/s00344-006-0046-1 [29] JAIN S, SRIVASTAVA S, SARIN N B, et al. Proteomics Reveals Elevated Levels of PR 10 Proteins in Saline-Tolerant Peanut (Arachishypogaea) Calli[J]. Plant PhysiolBiochem, 2006, 44(4):253-259. [30] FERNANDES H, PASTERNAK O, BUJACZ G, et al. Lupinus Luteus Pathogenesis-Related Protein as AReservoir for Cytokinin[J]. J MolBiol, 2008, 378(5):1040-1051. doi: 10.1016/j.jmb.2008.03.027