-
甘蔗是我国南方的重要经济作物,在甘蔗全程机械化过程中收割机械化是最为重要的一个环节[1].但是我国的甘蔗收割机械化程度并不高,其中主要原因是由于我国甘蔗种植地区主要是丘陵和山地[2],地形起伏较大,适合机械作业的平缓坡地还不到40%[3],而现有的甘蔗收割机基本都无法根据地形变化自动调节切割刀盘的高度,造成收割质量不好,比如割茬过长、破头率高等[4],影响甘蔗第二年发苗.研究表明,甘蔗收割机在收获过程中刀盘入土一定深度进行切割可以获得更好的效果[5-6],所以设计出一套仿形系统,能不受环境因素影响(如甘蔗茎叶遮挡等),使刀盘能够随着蔗垄起伏而上下移动、始终保持在一定的入土深度进行甘蔗切割,便是我国甘蔗收割机械发展的一个重大突破口.目前虽然已经有一些关于图像处理、切割负载压力等方面的研究[7-9],但基本还没有完整可靠的仿形系统投入使用,本文提出了一种通过机械检测装置测量地面相对高度的方法,并进行了甘蔗收割机模拟试验研究.
Research and Simulation Test of an Automatic Adjusting System of Blade Height of Sugarcane Harvester
-
摘要: 我国甘蔗种植主要集中在南方丘陵山区,地势起伏大,甘蔗收割机在收割过程中,刀盘不能随着地形变化自动调整高度,无法在合适的位置进行甘蔗切割,造成切割质量差及影响甘蔗第二年发苗和刀具损坏等问题.针对这一现象,设计了一种地面高度检测装置,能够测量出甘蔗垄的相对高度,并利用液压控制系统模拟甘蔗收割机的割台部分,配合检测装置进行了切割刀盘的仿地形自动升降测试.结果表明:地面高度检测装置的最大误差为6 mm,采用了该检测装置的刀盘高度自动调节系统误差为9 mm,能够满足生产使用的精度要求.Abstract: In China, the planting of sugarcane is mainly concentrated in the hilly areas of the southern part of the country, where the terrain is undulating. In the process of harvesting sugarcane, the cutter can not automatically adjust its height with the changes of the terrain, so it can't cut the sugarcane in the right position, causing poor cutting quality and influencing the germination of sugarcane the next year. In addition, the cutting tools may be damaged. In view of this phenomenon, a measuring device is designed, which can measure the height of the sugarcane ridges. The cutting part of the sugarcane harvester is simulated with a hydraulic control system, and an automatic adjusting test of terrain imitation is carried out. The result shows that the maximum error of the measuring device is 6 mm, and that of the automatic cutting height adjusting system with this device is 9 mm, which can meet the accuracy requirements of practical application.
-
Key words:
- sugarcane harvester /
- height measuring /
- hydraulic system /
- automatic adjustment .
-
表 1 检测装置单独试验结果
序号 检测装置测量
结果/mm实际垄高/
mm绝对误差/
mm1 54 48 6 2 61 57 4 3 67 72 5 4 87 84 3 5 124 129 5 6 144 149 5 7 189 195 6 8 167 162 4 9 95 99 4 10 83 80 3 表 2 试验机整机模拟试验结果
序号 刀盘高度/
mm实际垄高/
mm绝对误差/
mm1 41 47 6 2 58 52 6 3 68 60 8 4 86 91 5 5 146 140 6 6 200 191 9 7 175 170 5 8 123 127 4 9 99 92 7 10 64 70 6 -
[1] 蒙静杰.甘蔗机械化收割技术与收割机械推广分析[J].农业与技术, 2017, 37(9):46-47, 80. doi: http://d.old.wanfangdata.com.cn/Periodical/nyyjs201709022 [2] 丁美花, 谭宗琨, 熊文兵, 等.基于MODIS数据提取广西甘蔗信息技术初步研究[J].西南大学学报(自然科学版), 2008, 30(9):94-100. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=xnnydxxb200809021&flag=1 [3] 王晓鸣, 莫建霖.甘蔗生产机械化现状及相关问题的思考[J].农机化研究, 2012, 34(10):6-11. doi: 10.3969/j.issn.1003-188X.2012.10.002 [4] 廖平伟, 张华, 罗俊, 等.我国甘蔗机械化收获现状的研究[J].农机化研究, 2011, 33(3):26-29. doi: 10.3969/j.issn.1003-188X.2011.03.006 [5] 周建阳, 朱艳, 李尚平, 等.砍蔗刀盘切割深度对宿根破头率影响的研究[J].农机化研究, 2015, 37(2):186-189. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201502045.htm [6] 陈超君, 梁和, 何章飞, 等.甘蔗机械收获对蔗蔸质量和宿根蔗生长影响初探[J].广东农业科学, 2011, 38(23):26-30. doi: 10.3969/j.issn.1004-874X.2011.23.009 [7] 黄亦其, 黄体森, 杨睿, 等.基于机器视觉的甘蔗切割高度检测与试验[J].中国农机化学报, 2017, 38(9):81-87. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnjh201709017 [8] 刘庆庭, 区颖刚, 卿上乐, 等.甘蔗茎秆切割力试验[J].农业工程学报, 2007, 23(7):90-94. doi: 10.3321/j.issn:1002-6819.2007.07.017 [9] 陈远玲, 周启迪, 黄芸茗, 等.基于压力反馈的甘蔗收割机台架液压升降系统仿真[J].农机化研究, 2010, 32(9):37-40. doi: 10.3969/j.issn.1003-188X.2010.09.010 [10] 李明, 王雷, 蔡劲草, 等.基于Fluid SIM的装载机液压系统建模与仿真[J].重庆理工大学学报(自然科学版), 2016, 30(8):36-44. doi: 10.3969/j.issn.1674-8425(z).2016.08.006 [11] 贾渭娟, 何斌, 郑雪娜.轧机液压伺服系统滑模变结构控制[J].重庆理工大学学报(自然科学版), 2017, 31(4):111-114. doi: http://d.old.wanfangdata.com.cn/Periodical/cqgxyxb201704018 [12] 麻芳兰, 蔡力, 杨代云, 等.基于刀盘动刚性的甘蔗收获机布局试验研究[J].农机化研究, 2016, 38(5):213-218, 223. doi: 10.3969/j.issn.1003-188X.2016.05.043 [13] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234604973 MATHANKER S K, GRIFT T E, HANSEN A C. Effect of Blade Oblique Angle and Cutting Speed on Cutting Energy for Energycane Stems[J]. Biosystems Engineering, 2015, 133(5):64-70. [14] 罗词广, 王顺喜, 彭彦昆, 等.我国甘蔗联合收割机发展中一些问题的探讨[J].农机化研究, 2013, 35(6):247-249. doi: 10.3969/j.issn.1003-188X.2013.06.062