-
土壤有机碳(Soil organic carbon,SOC)是土壤中动植物等残体通过微生物分解作用输入土壤的一种有机物质,是土壤中较活跃的组分,其在保持土壤质量、提高土壤生产力和全球碳循环中具有十分重要的作用[1-3].目前,国内外开展了大量有关SOC质量分数变化的研究[4-8],且研究者已证明水热因子是影响SOC变化的一个主要因素[9-12].升温会增强微生物活性,促进SOC分解[13-14];张敬智等[15]研究指出,淹水培养会加快SOC的矿化分解,丁长欢等[16]室内模拟不同水分梯度对三峡水库消落带紫色土SOC矿化分解的研究也认为高水分条件下更有利于SOC的矿化分解.但上述研究结果均是基于室内培养试验得出,而自然状态下,水分的不稳定性对SOC动态变化的影响是否也具有类似的规律则有待进一步研究.
自三峡水库实行“蓄清排浑”的运行方式后,夏季低水位运行,冬季高水位运行,进而在水库两岸形成了与天然河流涨落季节相反、涨落幅度达30 m的水库消落区.三峡水库消落区是我国重要的内陆湿地资源,在全球碳储存和调控中扮演着重要的角色[17-19].同建库前的冬季低水位相比,冬季高水位运行导致三峡水库消落区土壤的水分环境发生了极大的改变,这些改变都会影响到三峡水库消落区SOC的动态过程,目前关于水热因素对三峡库区SOC变化的研究主要集中于室内培养[16],而对于自然状态培养下SOC动态变化鲜有报道.为此,本研究以三峡水库消落区为试验区,紫色土和水稻土为供试培养土壤,通过三峡水库消落区不同高程的实地培养试验,探讨在三峡水库不同高程消落区的水分变化影响下,培养土壤的SOC质量分数变化特征;并结合原位土壤的SOC分布特点,揭示三峡水库现行水位调度方式对土壤有机碳动态变化的影响效应,以期为三峡水库消落区碳库调控、水环境保护以及水库调度等提供科学参考和理论依据.
Effects of Water Variation at Different Altitudes in the Hydro-Fluctuating Areas of Three Gorges Reservoir on Soil Organic Carbon
-
摘要: 以位于重庆市涪陵区珍溪镇的三峡典型消落区为研究区,紫色土和水稻土为供试培养土壤,在研究区内按7个高程(152,157,162,167,172,177和182 m)实地布设培养试验;同时,多点、分层采集研究区内不同高程段(150~155,155~160,160~165,165~170,170~175,175~180和180~185 m)的剖面(0~40 cm)土样,探讨三峡水库不同高程消落区水分变化对土壤有机碳(SOC)的影响.结果表明,两种供试土壤在研究区不同高程点位实地培养1 a后,其SOC质量分数相较于培养前均有所降低;其中,水稻土在高程152 m处的减少量最大,其显著大于非消落区的177 m和182 m高程;紫色土在152 m和157 m高程处的总有机碳变化量(ΔTSOC)均显著大于172,177和182 m高程(p < 0.05),但两高程间无明显差异,由此可见,与≥177 m的高程段相比,消落区低高程段(152 m)的水分环境更有利于培养土壤SOC分解;此外,实地培养1 a后,在152 m高程下两种培养土壤的老碳损失量(ΔLSOC)均较大,水稻土和紫色土在该高程下的老碳损失比例分别为14.33%和40.22%,且两种土壤的ΔLSOC与ΔTSOC间均存在明显的正相关.这表明,老碳损失是导致消落区152 m高程段培养SOC损失量较高的主要原因.另外,结合不同高程原位土壤有机碳分布特征,得出三峡水库消落区在160~165 m高程段的碳汇效应最强.Abstract: In order to investigate the effect of water variation at different altitudes of the hydro-fluctuating areas on soil organic carbon (SOC), the typical hydro-fluctuating area of the Three Gorges Reservoir (TGR) at Zhenxi town in Fuling District of Chongqing was used as the research area, and purple soil and paddy soil were used as the culture soil. An in situ culture experiment was carried out at the altitude of 152, 157, 162, 167, 172, 177 and 182 m. Meanwhile, soil samples were collected from the 0-40 cm layer at the altitude of 150-155, 155-160, 160-165, 165-170, 170-175, 175-180 and 180-185 m. The result showed that SOC content decreased after one-year field cultivation. The SOC decrement of paddy soil at the altitude of 152 m was the largest, which was significantly higher than the decrement of paddy soil at the altitude of 177 m or 182 m. The total organic carbon change (ΔTSOC) of purple soil at the altitude of 152 m and 157 m was significantly larger than that at the altitude of 172 m, 177 m and 182 m (p < 0.05), but there was no significant difference between the altitude of 152 m and 157 m. Compared with that of the altitude of ≥ 177 m, the water environment of the low altitude (152 m) in the hydro-fluctuating areas was more favorable for the decomposition of soil SOC. In addition, after one-year culture experiment, the old carbon loss (ΔLSOC) of the two soils at the altitude of 152 m was large, the loss ratio of the paddy soil and the purple soil was 14.33% and 40.22%, respectively. Meanwhile there was a significant positive correlation between ΔLSOC and ΔTSOC of the two soils. This indicated that the decrease of ΔLSOC was the primary cause that resulted in the reduction of SOC at the altitude of 152 m. In addition, combined with distribution characteristics of soil organic carbon at different altitudes, the results showed that the carbon sink capacity was highest in the hydro-fluctuating areas of 160-165 m altitude of the TGR.
-
Key words:
- soil organic carbon /
- altitude /
- carbon loss quantity /
- hydro-fluctuating area .
-
表 1 培养土壤基本理化性质
培养土壤 pH值 SOC/(g·kg-1) DOC/(mg·kg-1) 全氮/(g·kg-1) 水稻土 8.02 10.67 176.78 1.10 紫色土 5.82 12.05 178.47 1.17 煅烧水稻土 8.44 1.41 - 0.09 煅烧紫色土 6.08 1.21 - 0.07 表 2 不同高程下培养土壤的老碳损失比例
高程/m 老碳损失比例/% 水稻土 紫色土 152 14.33 44.22 157 4.78 22.78 162 5.95 13.73 167 10.01 15.37 172 8.25 13.56 177 2.89 12.90 182 0.65 9.16 表 3 不同高程段原位SOC分布特征
高程/m SOC0~20/(g·kg-1) SOC20~40/(g·kg-1) 150~155 25.57±0.71b 8.65±1.61ab 155~160 23.41±2.46bc 7.86±0.83ab 160~165 26.34±1.13b 5.36±2.66b 165~170 20.87±1.59c 8.37±1.57ab 170~175 24.27±2.12b 6.57±1.66b 175~180 29.74±3.26a 10.25±1.10a 180~185 20.07±0.80c 6.82±0.36b 注:SOC0~20,SOC20~40分别表示0~20,20~40 cm土层的有机碳质量分数;各列数值后不同小写字母表示同列数值之间差异有统计学意义(p<0.05). 表 4 老碳损失量(ΔLSOC)与总有机碳变化量(ΔTSOC)的相关性分析
土壤类型 r p 水稻土 0.939** 0.002 紫色土 0.834* 0.02 -
[1] MEINSHAUSEN M, MEINSHAUSEN N, HARE W, et al. Greenhouse-Gas Emission Targets for Limiting Global Warming to 2℃[J]. Nature, 2009, 458(7242):1158-1162. doi: 10.1038/nature08017 [2] LAL R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security[J]. Science, 2004, 304(5677):1623-1627. doi: 10.1126/science.1097396 [3] 曹宏杰, 王立民, 罗春雨, 等.三江平原地区土壤有机碳及其组分的空间分布特征[J].生态环境学报, 2013, 22(7):1111-1118. doi: 10.3969/j.issn.1674-5906.2013.07.004 [4] 马维伟, 王辉, 李广, 等.甘南尕海湿地不同植被退化阶段土壤有机碳含量及动态[J].水土保持学报, 2015, 29(5):254-259. doi: http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201505046 [5] 罗怀良, 王慧萍, 陈浩.川中丘陵地区近25年来农田土壤有机碳密度变化——以四川省盐亭县为例[J].山地学报, 2010, 28(2):212-217. doi: 10.3969/j.issn.1008-2786.2010.02.013 [6] STERGIADI M, VAN DER PERK M, DE NIJS T C M, et al. Effects of Climate Change and Land Management on Soil Organic Carbon Dynamics and Carbon Leaching in Northwestern Europe[J]. Biogeosciences, 2016, 13(5):1519-1536. doi: 10.5194/bg-13-1519-2016 [7] 王玉竹, 肖和艾, 周萍, 等.江汉平原农田土壤有机碳分布与变化特点:以潜江市为例[J].环境科学, 2015, 36(9):3422-3428. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkx201509038 [8] 朱凌宇, 潘剑君, 张威.祁连山不同海拔土壤有机碳库及分解特征研究[J].环境科学, 2013, 34(2):668-675. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkx201302037 [9] 郝瑞军, 李忠佩, 车玉萍.水分状况对水稻土有机碳矿化动态的影响[J].土壤, 2006, 38(6):750-754. doi: 10.3321/j.issn:0253-9829.2006.06.015 [10] DAVIDSON E A, TRUMBORE S E, AMUNDSON R. Soil Warming and Organic Carbon Content[J]. Nature, 2000, 408(6814):789-790. doi: 10.1038/35048672 [11] BESASIE N J, BUCKLEY M E. Carbon Sequestration Potential at Central Wisconsin Wetland Reserve Program Sites[J]. Soil Science Society of America Journal, 2012, 76(5):1904. doi: 10.2136/sssaj2011.0309 [12] 王苑, 宋新山, 王君, 等.干湿交替对土壤碳库和有机碳矿化的影响[J].土壤学报, 2014, 51(2):342-350. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201402016 [13] FANG C, MONCRIEFF J B. The Dependence of Soil CO2 Efflux on Temperature[J]. Soil Biology and Biochemistry, 2001, 33(2):155-165. doi: 10.1016/S0038-0717(00)00125-5 [14] 胡亚林, 汪思龙, 颜绍馗.影响土壤微生物活性与群落结构因素研究进展[J].土壤通报, 2006, 37(1):170-176. doi: 10.3321/j.issn:0564-3945.2006.01.038 [15] 张敬智, 马超, 郜红建.淹水和好气条件下东北稻田黑土有机碳矿化和微生物群落演变规律[J].农业环境科学学报, 2017, 36(6):1160-1166. doi: http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201706019 [16] 丁长欢, 王莲阁, 唐江, 等.水热变化对三峡水库消落带紫色土有机碳矿化的影响[J].环境科学, 2016, 37(7):2763-2769. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkx201607045 [17] 宋长春.湿地生态系统碳循环研究进展[J].地理科学, 2003, 23(5):622-628. doi: 10.3969/j.issn.1000-0690.2003.05.018 [18] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000. [19] 张立冬, 李新, 秦洪文, 等.三峡水库消落区周期性水淹对狗牙根非结构性碳水化合物积累与分配的影响[J].三峡生态环境监测, 2018, 3(2):27-33. doi: http://d.old.wanfangdata.com.cn/Periodical/sxsthjjc201802006 [20] 王成己, 潘根兴, 田有国.保护性耕作下农田表土有机碳含量变化特征分析——基于中国农业生态系统长期试验资料[J].农业环境科学学报, 2009, 28(12):2464-2475. doi: 10.3321/j.issn:1672-2043.2009.12.005 [21] 王嫒华, 苏以荣, 李杨, 等.水田和旱地土壤有机碳周转对水分的响应[J].中国农业科学, 2012, 45(2):266-274. doi: 10.3864/j.issn.0578-1752.2012.02.008 [22] GAO J Q, OUYANG H, LEI G C, et al. Effects of Temperature, Soil Moisture, Soil Type and Their Interactions on Soil Carbon Mineralization in Zoigê Alpine Wetland, Qinghai-Tibet Plateau[J]. Chinese Geographical Science, 2011, 21(1):27-35. doi: 10.1007/s11769-011-0439-3 [23] 郝瑞军, 李忠佩, 车玉萍.好气和淹水处理间苏南水稻土有机碳矿化量差异的变化特征[J].中国农业科学, 2010, 43(6):1164-1172. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnykx201006008 [24] 李忠佩, 张桃林, 陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报, 2004, 41(4):544-552. doi: 10.3321/j.issn:0564-3929.2004.04.008 [25] 黄哲, 江长胜, 雷利国, 等.三峡库区消落带不同淹水期土壤可溶性碳氮的研究[J].西南大学学报(自然科学版), 2018, 40(1):98-106. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201801015&flag=1 [26] 李顺姬, 邱莉萍, 张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报, 2010, 30(5):1217-1226. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201005013 [27] 王莲阁, 高岩红, 丁长欢, 等.三峡库区典型消落带土壤有机碳分布特征[J].西南大学学报(自然科学版), 2015, 37(3):120-124. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2015-03-120&flag=1 [28] 刘维暐, 王杰, 王勇, 等.三峡水库消落区不同海拔高度的植物群落多样性差异[J].生态学报, 2012, 32(17):5454-5466. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201217018 [29] 白军红, 邓伟, 张玉霞, 等.洪泛区天然湿地土壤有机质及氮素空间分布特征[J].环境科学, 2002, 23(2):77-81. doi: 10.3321/j.issn:0250-3301.2002.02.016