-
当前,我国农田已不堪重负,良田沃土退化、土壤污染、耕地地力下降、养分贫瘠等问题凸显,存在严重的生态环境和食品安全隐患.为应对这些问题,近年来,诸如护耕、休耕、农田涵养水源以及土壤增碳等计划逐步启动和实施[1-4].在土壤增碳方面,被学术界誉为“黑色黄金”的生物炭,已成为调理土壤健康的环境功能材料.它是由生物质在缺氧条件下经高温裂解生成的孔状固体物质,有较大的比表面积、较多的含氧活性基团及一些植物营养元素[5];其不仅具有改善土壤性质、提升土壤肥力、减轻土壤污染等农艺和生态功能[6-10],也是增加土壤碳汇、减少N2O和CH4等温室气体排放的技术选项之一[11-12].
《全国农业可持续发展规划(2015-2030年)》首次将“生物炭改良土壤”明确写入扶持政策范畴,与秸秆还田、深耕深松、积造施用有机肥和种植绿肥同列[13].可见秸秆炭化还田已具备市场化条件,建设生物炭产业是践行秸秆炭化还田理念的体现.但是目前生物炭产业在我国尚处于培育阶段,其制造多见于采用热裂解技术和水热炭化法在实验室和小型炭炉中进行[14-17],应用实例也多见于科研用途,未能在农业生产中大规模推广使用,这主要是因为面临着使用成本过高这一瓶颈问题[18-19].若能在田间直接将秸秆转化为生物炭,并应用于退化土壤的改良与污染环境的修复,不仅能够节省秸秆收集与前处理、制炭场地与设备运维、成品运输等环节费用,大幅降低制炭成本,又能够为提升地力、净化土壤、固碳减排等做出新的有益贡献[20].
本研究以黄河三角洲地区常见的农林生物质(棉花秸秆、芦苇、竹柳)为原料,探究将其在田间直接转化为生物炭的技术,以期获得性能稳定的生物炭产品.目的在于有效地降低生物炭的制备和使用成本,并为其制备和应用提供新的技术选项和思路——田间原位炭化还田.
Biochars Made in the Field Using Coupled Oxygen-Limiting and Mist-Spraying Technique and Their Properties
-
摘要: 生物炭具有改良土壤、固碳减排、吸附重金属和有机污染物等方面的有益作用,但其农业和环保应用面临着成本过高这一瓶颈问题.在田间直接将生物质转化为生物炭,可节省原材料收集与炭品运输等环节的费用,降低使用成本.可通过喷雾技术在田间限氧条件下实现生物炭的制备,其工艺如下:物料在槽内经逐层压实后,采用单向引燃、逐次喷雾的方式辅助竹柳和棉秆成炭;采用多位点引燃、逐层喷雾的方式辅助芦苇成炭.制炭期间,土槽中的侧壁开孔方管起通气和限氧作用以控制适燃,铁质密网起限氧、防尘和提供喷雾通道等作用以控制成炭.采用该技术制备的生物炭表现出了较好的同槽均质性和异槽同质性,成炭率达30%,制备得到的炭含有丰富的羧基(0.71~1.43 mol/kg)、酚羟基(0.43~1.09 mol/kg)官能团,且具有较大的比表面积(45.5~83.2 m2/g).田间"限氧喷雾"技术为生物炭的制备提供了新的思路和技术选项,也为其农业和环保应用创造了条件.Abstract: Biochars have a range of functions from improving soil properties and remediating contaminated soils to reducing greenhouse gas emission from soil and increasing carbon content in soil. Their large-scale application, however, has been constrained by high costs of production and transportation. To solve this problem, a novel method has been developed for biochar production in the field with a coupled oxygen-limiting and mist-spraying technique. Agricultural and forest residues are placed in a soil trough and compacted layer by layer, a steel square tube with multiple holes is imbedded in the biomass, and an iron mesh is put on the top of it. The tube has the function of adjusting ventilation and oxygen supply to maintain flame temperature during biomass burning; and the mesh allows for the formation of a water film to limit oxygen supply. In field operations, cotton stalk or Salicaceae in the trough is ignited at one direction, whereas reed straw is ignited at multiple positions, for biomass carbonization, followed by water mist spraying layer by layer for a quick stop of carbonization. The biochars thus obtained have a yield of about 30% and are relatively homogeneous. They have abundant carboxyl group (0.71-1.43 mol/kg) and phenolic hydroxyl group (0.43-1.09 mol/kg) and a specific surface area of 45.5-83.2 m2/g. Being able to produce good-quality biochars directly in the field at a low cost, this method makes feasible agricultural and environmental application of biochars.
-
表 1 田间制备生物炭的基本理化性质
样品
名称成炭温度/
℃成炭率/
%pH 元素组成/% —COOH量/
/(mol·kg-1)—OH量/
/(mol·kg-1)比表面积/
(m2·g-1)N C H S 竹柳炭 330±43.1 34.1±2.7 8.08±0.02 0.44±0.01 42.24±1.96 1.43±0.08 0.31±0.03 1.25±0.07 1.09±0.01 83.2 棉秆炭 453±3.7 30.1±1.0 9.21±0.03 0.63±0.02 43.49±1.55 1.78±0.04 0.60±0.17 0.71±0.02 0.44±0.03 45.5 芦苇炭 237±3.2 26.3±3.4 7.99±0.02 0.58±0.01 32.49±0.03 1.21±0.03 0.59±0.05 1.43±0.02 0.43±0.03 82.5 -
[1] 彭凌, 丁恩俊, 谢德体.中国耕地数量变化与耕地保护政策关系的实证分析[J].西南大学学报(自然科学版), 2011, 33(11):103-110. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=xnnydxxb201111018&flag=1 [2] 江娟丽, 杨庆媛, 阎建忠, 等.耕地休耕的研究进展与现实借鉴[J].西南大学学报(自然科学版), 2017, 39(1):165-171. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201701025&flag=1 [3] 李晶, 张薇薇.关中-天水经济区农田生态系统涵养水源价值量时空变化[J].华南农业大学学报, 2014, 35(3):52-57. doi: http://d.old.wanfangdata.com.cn/Conference/8546797 [4] 程琨, 潘根兴. "千分之四"土壤增碳计划对中国的挑战与应对策略[J].气候变化研究进展, 2016, 12(5):457-464. doi: http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201605014 [5] doi: http://cn.bing.com/academic/profile?id=eaa9ac2d2bce2574fdb255d7ce638fe6&encoded=0&v=paper_preview&mkt=zh-cn ANTAL M J, GRØNLI M. The Art, Science, and Technology of Charcoal Production[J]. Industrial & Engineering Chemistry Research, 2003, 42(8):1619-1640. [6] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.soilbio.2011.04.022/ LEHMANN J, RILLIG M C, THIES J, et al. Biochar Effects on Soil Biota-A review[J]. Soil Biology & Biochemistry, 2011, 43(9):1812-1836. [7] doi: http://cn.bing.com/academic/profile?id=081e5cd53aec9fe75259378fcf5fefaa&encoded=0&v=paper_preview&mkt=zh-cn GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical Properties and Microbial Responses in Biochar-amended Soils:Mechanisms and Future Directions[J]. Agriculture, Ecosystems & Environment, 2015, 206:46-59. [8] JEFFERY S, BEZEMER T M, CORNELISSEN G, et al. The Way Forward in Biochar Research:Targeting Trade-offs Between the Potential Wins[J]. Global Change Biology Bioenergy, 2015, 7(1):1-13. doi: 10.1111/gcbb.2014.7.issue-1 [9] TAN X F, LIU Y G, ZENG G M, et al. Application of Biochar for the Removal of Pollutants from Aqueous Solutions[J]. Chemosphere, 2015, 125:70-85. doi: 10.1016/j.chemosphere.2014.12.058 [10] WU W D, LI J H, LAN T, et al. Unraveling Sorption of Lead in Aqueous Solutions by Chemically Modified Biochar Derived from Coconut Fiber:A Microscopic and Spectroscopic Investigation[J]. Science of the Total Environment, 2017, 576:766-774. doi: 10.1016/j.scitotenv.2016.10.163 [11] LEHMANN J. Bio-energy in the Black[J]. Frontiers in Ecology and the Environment, 2007, 5(7):381-387. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 [12] Wu M X, Feng Q B, Sun X, et al. Rice (Oryza sativa L.) Plantation Affects the Stability of Biochar in Paddy Soil[J]. Scientific Reports, 2015(5):2045-2322. [13] 中华人民共和国农业农村部. 《全国农业可持续发展规划(2015-2030年)》[R/OL]. (2015-05-28). http://www.moa.gov.cn/nybgb/2015/liu/201712/t20171219_6103855.htm. [14] MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of Wood/biomass for Bio-oil:A Critical Review[J]. Energy and Fuels, 2006, 20(3):848-889. doi: 10.1021/ef0502397 [15] WU W D, LI J H, NIAZI N K, et al. Influence of Pyrolysis Temperature on Lead Immobilization by Chemically Modified Coconut Fiber-derived Biocharsin Aqueous Environments[J]. Environmental Science and Pollution Research, 2016, 23(22):22890-22896. doi: 10.1007/s11356-016-7428-0 [16] LIBRA J A, RO K S, KAMMANN C, et al. Hydro-thermal Carbonization of Biomass Residuals:a Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis[J]. Biofuels, 2011, 2(1):71-106. [17] doi: http://cn.bing.com/academic/profile?id=98f44f939002eee81f84a4dfdb819718&encoded=0&v=paper_preview&mkt=zh-cn KANG S M, LI X L, FAN J, et al. Characterization of HydrocharsProduced by Hydro-thermal Carbonization of Lignin, Cellulose, D-xylose, and Wood Meal[J]. Industrial & Engineering Chemistry Research, 2012, 51(26):9023-9031. [18] 袁帅, 赵立欣, 孟海波, 等.生物炭主要类型、理化性质及其研究展望[J].植物营养与肥料学报, 2016, 22(5):1402-1417. doi: http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201605028 [19] MAROUSEK J, VOCHOZKA M, PLACHY J, et al. Glory and Misery of Biochar[J]. Clean Technologies and Environmental Policy, 2017, 19(2):311-317. doi: 10.1007/s10098-016-1284-y [20] 王亚静, 王飞, 石祖梁, 等.基于农业供给侧结构性改革背景的秸秆资源与利用研究[J].中国农业资源与区划, 2017, 38(6):13-20. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201706003 [21] 袁国栋, 校亮.一种可移动式田间原位限氧制备生物炭的设备与方法: 201711395117. 4[P]. 2017-12-22. [22] INYANG M, GAO B, PULLAMMANAPPALLIL P, et al. Biochar from Anaerobically Digested Sugarcane Baggage[J]. Bioresource Technology, 2010, 101(22):8868-8872. doi: 10.1016/j.biortech.2010.06.088 [23] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000:258-260. [24] 王群.生物质源和制炭温度对生物炭构效的影响[D].上海: 上海交通大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013022801.htm [25] HARDER B. Smoldered-Earth Policy:Created by Ancient Amazonian Natives, Fertile, Dark Soils Retain Abundant Carbon[J]. Science News, 2006, 169(9):133-133. [26] MARRIS E. Putting the Carbon Back:Black is the New Green[J]. Nature, 2006, 442(7103):624-626. doi: 10.1038/442624a [27] LEHMANN J. A Handful of Carbon[J]. Nature, 2007, 447(7141):143-144. doi: 10.1038/447143a [28] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028916039/ RENNER R. Rethinking Biochar[J]. Environmental Science & Technology, 2007, 41(17):5932-5933. [29] KATYAL S, THAMBIMUTHU K, VALIX M. Carbonisation of Bagasse in a Fixed Bed Reactor:Influence of Process Variables on Char Yield and Characteristics[J]. Renewable Energy, 2003, 28(5):713-725. doi: 10.1016/S0960-1481(02)00112-X [30] doi: http://cn.bing.com/academic/profile?id=8ca7611a64fa5ca120baa89810fdb80a&encoded=0&v=paper_preview&mkt=zh-cn LEHMANN J, GAUNT J, RONDON M. Biochar Sequestration in Terrestrial Ecosystems:A Review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2):395-419. [31] YUE Y, LIN Q M, XU Y Q, et al. Slow Pyrolysis as a Measure for Rapidly Treating Cow Manure and the Biochar Characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:355-361. doi: 10.1016/j.jaap.2017.01.008