留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

不动点技巧在反应扩散模糊随机周期时滞系统稳定性分析中的应用

上一篇

下一篇

李兴贵, 黄家琳. 不动点技巧在反应扩散模糊随机周期时滞系统稳定性分析中的应用[J]. 西南大学学报(自然科学版), 2019, 41(6): 64-72. doi: 10.13718/j.cnki.xdzk.2019.06.010
引用本文: 李兴贵, 黄家琳. 不动点技巧在反应扩散模糊随机周期时滞系统稳定性分析中的应用[J]. 西南大学学报(自然科学版), 2019, 41(6): 64-72. doi: 10.13718/j.cnki.xdzk.2019.06.010
Xing-gui LI, Jia-lin HUANG. Application of the Fixed Point Approach to Stochastic Stability Analysis for the Periodic Reaction-Diffusion T-S Fuzzy System with Time Delays[J]. Journal of Southwest University Natural Science Edition, 2019, 41(6): 64-72. doi: 10.13718/j.cnki.xdzk.2019.06.010
Citation: Xing-gui LI, Jia-lin HUANG. Application of the Fixed Point Approach to Stochastic Stability Analysis for the Periodic Reaction-Diffusion T-S Fuzzy System with Time Delays[J]. Journal of Southwest University Natural Science Edition, 2019, 41(6): 64-72. doi: 10.13718/j.cnki.xdzk.2019.06.010

不动点技巧在反应扩散模糊随机周期时滞系统稳定性分析中的应用

  • 基金项目: 国家973项目(2010CB732501);四川省科技厅基础研究计划项目(2012JYZ010)
详细信息
    作者简介:

    李兴贵(1974-), 男, 教授, 主要从事数学教育与非线性分析的研究 .

    通讯作者: 黄家琳, 教授
  • 中图分类号: O193

Application of the Fixed Point Approach to Stochastic Stability Analysis for the Periodic Reaction-Diffusion T-S Fuzzy System with Time Delays

  • 摘要: 利用不动点定理、变分方法、线性矩阵不等式技巧、李雅普诺夫方法和Banach压缩映射原理,给出了线性矩阵不等式条件的反应扩散马尔科夫跳跃周期模糊时滞系统的随机稳定性判据,并通过建立在乘积空间上的压缩映射克服了反应扩散模型带来的数学上的困难.最后,利用数值实例证实了所述方法的有效性.
  • 加载中
  • [1] 牟天伟, 饶若峰.不动点原理在时滞BAM神经网络稳定性分析中的一个应用[J].西南大学学报(自然科学版), 2017, 39(6):5-9. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201706002&flag=1
    [2] RAO R F, ZHONG S M, PU Z L. Fixed Point and p-Stability of T-S Fuzzy Impulsive Reaction-Diffusion Dynamic Neural Networks with Distributed Delay Via Laplacian Semigroup[J]. Neurocomputing, 2019, 335:170-184. doi: 10.1016/j.neucom.2019.01.051
    [3] RAO R F, ZHONG S M, PU Z L. On the Role of Diffusion Factors in Stability Analysis for p-Laplace Dynamical Equations Involved to BAM Cohen-Grossberg Neural Network[J]. Neurocomputing, 2017, 223:54-62. doi: 10.1016/j.neucom.2016.10.036
    [4] LI H F, JIANG H J, HU C. Existence and Global Exponential Stability of Periodic Solution of Memristor-Based BAM Neural Networks with Time-Varying Delays[J]. Neural Networks, 2016, 75:97-109. doi: 10.1016/j.neunet.2015.12.006
    [5] RAO R F, ZHONG S M, WANG X R. Stochastic Stability Criteria with LMI Conditions for Markovian Jumping Impulsive BAM Neural Networks with Mode-Dependent Time-Varying Delays and Nonlinear Reaction-Diffusion[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1):258-273. doi: 10.1016/j.cnsns.2013.05.024
    [6] ZHANG X H, WU S L, LI K L. Delay-Dependent Exponential Stability for Impulsive Cohen-Grossberg Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3):1524-1532. doi: 10.1016/j.cnsns.2010.06.023
    [7] 俸卫. T-S模糊马尔可夫跳跃时滞Cohen-Grossberg神经网络的几乎必然指数稳定性[J].西南师范大学学报(自然科学版), 2015, 40(5):10-12. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201505003
    [8] 黄家琳, 饶若峰. Cohen-Grossberg神经网络的全局指数稳定性[J].西南大学学报(自然科学版), 2016, 38(2):78-82. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201602013&flag=1
    [9] 饶若峰, 黄家琳, 钟守铭.反应扩散BAM神经网络的全局指数稳定性[J].吉林大学学报(理学版), 2012, 50(6):1086-1090. doi: http://d.old.wanfangdata.com.cn/Periodical/jldxzrkxxb201206006
    [10] 饶若峰, 王雄瑞.没有Landesman-Lazer型条件的拟线性强振动方程之无穷多解[J].数学物理学报, 2012, 32(4):744-752. doi: 10.3969/j.issn.1003-3998.2012.04.012
    [11] 饶若峰.涉及第一特征值和临界指数的一类椭圆方程[J].数学进展, 2004, 33(6):703-711. doi: http://d.old.wanfangdata.com.cn/Periodical/sxjz200406006
    [12] 饶若峰.具临界指数椭圆方程-Δu=λku+|u|2*-2u+f(x, u)非平凡多解存在性[J].数学年刊(A辑), 2005, 26(6):749-754. doi: http://d.old.wanfangdata.com.cn/Periodical/sxnk200506002
    [13] 饶若峰.渐近非扩张映像具误差的合成隐迭代序列的弱收敛和强收敛定理[J].数学年刊(A辑), 2008, 29(4):461-470. doi: http://d.old.wanfangdata.com.cn/Periodical/sxnk200804004
    [14] 饶若峰.严格渐进伪压缩映象之修正型Mann迭代算法的强收敛性[J].数学进展, 2010, 39(3):283-288. doi: 10.11845/sxjz.2010.39.03.0283
    [15] 饶若峰.带误差的合成隐迭代新算法[J].数学物理学报, 2009, 29(3):823-831. doi: http://d.old.wanfangdata.com.cn/Periodical/sxwlxb200903034
    [16] 饶若峰.无限族非扩张非自射映象公共不动点的迭代逼近与Cesàro均值迭代收敛性[J].数学物理学报, 2010, 30(6):1666-1676. doi: http://d.old.wanfangdata.com.cn/Periodical/sxwlxb201006032
  • 加载中
计量
  • 文章访问数:  721
  • HTML全文浏览数:  549
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-03-09
  • 刊出日期:  2019-06-20

不动点技巧在反应扩散模糊随机周期时滞系统稳定性分析中的应用

    通讯作者: 黄家琳, 教授
    作者简介: 李兴贵(1974-), 男, 教授, 主要从事数学教育与非线性分析的研究
  • 1. 成都师范学院 数学系, 成都 611130
  • 2. 四川三河职业学院 基础部, 四川 泸州 646200
基金项目:  国家973项目(2010CB732501);四川省科技厅基础研究计划项目(2012JYZ010)

摘要: 利用不动点定理、变分方法、线性矩阵不等式技巧、李雅普诺夫方法和Banach压缩映射原理,给出了线性矩阵不等式条件的反应扩散马尔科夫跳跃周期模糊时滞系统的随机稳定性判据,并通过建立在乘积空间上的压缩映射克服了反应扩散模型带来的数学上的困难.最后,利用数值实例证实了所述方法的有效性.

English Abstract

  • 由于双向联想记忆神经网络在许多领域的成功应用(如模式识别、自动控制、信号和图像处理、人工智能、并行计算和优化问题等),其动力行为分析(如稳定性等)成了热门课题,这是因为各类神经网络的上述成功应用的前提条件是系统具有某种稳定性[1-3].文献[4]研究了一类双向联想记忆神经网络的指数型稳定性.本文欲推广文献[4]的结果到反应扩散情形,研究一类反应扩散模糊马尔科夫跳跃周期时滞系统的稳定性,并给出线性矩阵不等式条件的判据.由于线性矩阵不等式判据可以用计算机Matlab LMI工具箱编程验证其有效性,因此,在实际工程中的大型运算中占优.

    文献[3]的推论4.1研究过以下模糊双向联想记忆神经网络:

    该系统没考虑随机因素.本文将在此基础上同时考虑随机因素和模糊因素,所得结论会更佳.

  • 考虑如下模糊反应扩散双向联想记忆神经网络系统模型:

    模糊规则[2]  j:如果w1(t)=μj1,…,ws(t)=μjs,则

    其中:

    A=(aik)n×m$\mathit{\boldsymbol{\tilde A}} = {\left({{{\tilde a}_{ik}}} \right)_{n \times m}}$是扩散参数矩阵,$\nabla u = {\left({\nabla {u_1}, \cdots, \nabla {u_n}} \right)^{\rm{T}}}$.这里$\nabla {u_i} = {\left({\frac{{\partial {u_i}}}{{\partial {x_1}}}, \cdots, \frac{{\partial {u_i}}}{{\partial {x_m}}}} \right)^{\rm{T}}}$,而$\mathit{\boldsymbol{A}} \circ \nabla u = {\left({{a_{ik}}\frac{{\partial {u_i}}}{{\partial {x_k}}}} \right)_{n \times m}}$表示矩阵A$\nabla u$的Hadamard乘积[5].外输入变量:

    重置参数矩阵Bj=diag(bj1bj2,…,bjn),${\mathit{\boldsymbol{\tilde B}}_j} = {\mathop{\rm diag}\nolimits} \left({{{\tilde b}_{j1}}, {\rm{ }}{{\tilde b}_{j2}}, \cdots, {{\tilde b}_{jn}}} \right)$,联络权重参数矩阵Ck=(cijk)n×n$\mathit{\boldsymbol{\tilde C}} = {\left({{{\tilde c}_{ijk}}} \right)_{n \times n}}$Dk=(dijk)n×n${\mathit{\boldsymbol{\tilde D}}_k} = {\left({{{\tilde d}_{ijk}}} \right)_{n \times n}}$,激活函数:

    ${\tilde g_j}(u(t - h, x))$亦为如上类似表示.

    假设概率空间(Ω*Υ$\mathbb{P}$),其中Ω*为样本空间,Υ是由样本空间子集所构成的σ-代数,$\mathbb{P}$是定义在Υ上的概率测度.设S={1,2,…,N},随机过程{r(t):[0,+∞)→S}是齐次的、有限状态的右连续轨线的马尔科夫过程,其生成集为∏=(πij)N×N,从t时刻状态itt时刻状态j的转移率为:

    其中ijS,而非负数πij≥0是从状态i到状态j(ji)的转移率,特别地,${{\rm{ \mathit{ π} }}_{ii}} = - \sum\limits_{j = 1, j \ne i}^N {{{\rm{ \mathit{ π} }}_{ij}}} $.变量δ>0,并且$\mathop {\lim }\limits_{\delta \to 0} \frac{{o(\delta)}}{\delta } = 0$. {μjkj=1,2,…,Jk=1,2,…,m}是模糊集,ωk(t)是前件变量,r*是IF-THEN规则[2]的个数,s为前提变量的个数.由单点模糊化、乘积推理和平均加权反模糊化得到模糊系统的整个状态方程为:

    时滞满足0≤h(t)≤τ0,0≤τ(t)≤τ0.记Ar=A(r(t)),Brj=Bj(r(t)),矩阵CrjDrj也是类似记法.对于矩阵Ar=(aij(r)(txu)),本文定义

    类似地,对于矩阵${\mathit{\boldsymbol{\tilde A}}_r} = \left({\tilde a_{ij}^{(r)}(t, x, u)} \right)$,记

    设反应扩散系统(2)的初值为:

    其中$\phi = {\left({{\phi _1}, \cdots, {\phi _n}} \right)^{\rm{T}}}, \varphi = {\left({{\varphi _1}, \cdots, {\varphi _n}} \right)^{\rm{T}}}$皆是有界连续函数.假设系统(2)满足纽曼边值

    其中$\frac{{\partial {u_i}}}{{\partial \gamma }} = {\left({\frac{{\partial {u_i}}}{{\partial {x_1}}}, \frac{{\partial {u_i}}}{{\partial {x_2}}}, \cdots, \frac{{\partial {u_i}}}{{\partial {x_n}}}} \right)^{\rm{T}}}$表示边界$\partial \mathit{\Omega }$上的外法线方向导.

    本文记$u(t, x, \phi, \varphi), v(t, x, \phi, \varphi)$为系统(2)满足(3),(4)式的解.在不引起混淆的情况下有时也简记为uv.另外,本文定义:

    对任给模式rS,本文假设:

    (A1)   $\mathit{\boldsymbol{A}}(r(t)), {\mathit{\boldsymbol{B}}_j}(r(t)), {\mathit{\boldsymbol{C}}_j}(r(t)), {\mathit{\boldsymbol{D}}_j}(r(t)), \mathit{\boldsymbol{L}}(t), \mathit{\boldsymbol{\tilde A}}(r(t)), {\rm{ }}{\mathit{\boldsymbol{\tilde B}}_j}(r(t)), {\rm{ }}{\mathit{\boldsymbol{\tilde C}}_j}(r(t)), {\rm{ }}{\mathit{\boldsymbol{\tilde D}}_j}(r(t)), \mathit{\boldsymbol{J}}(t)$都是$\mathbb{R}$上连续的ω-周期函数;

    (A2)   存在正定对角矩阵FjGj${\mathit{\boldsymbol{\tilde F}}_j}, {\rm{ }}{\mathit{\boldsymbol{\tilde G}}_j}$,使得对任给uv$\mathbb{R}$n,有:

    其中|u|=(|u1|,|u2|,…,|un|)T$\mathbb{R}$n$\forall u = {\left({{u_1}, \cdots, {u_n}} \right)^{\rm{T}}} \in {\mathbb{R}^n}$.

  • 首先关于初值ϕφ$\tilde \phi, {\rm{ }}\tilde \varphi $,本文记ut(ϕφ),vt(ϕφ)以及ut($\tilde \phi, {\rm{ }}\tilde \varphi $),vt($\tilde \phi, {\rm{ }}\tilde \varphi $)是系统(2)的两组解.设:

    有时也简记:

    引理1  设Ω$\mathbb{R}$m中的有界区域,其边界$\partial \mathit{\Omega }$C2光滑的.对任给模式rS,设Pr=diag(pr1pr2,…,prn)为正定对角矩阵,αr是正数,满足αrIPr.又设w=(w1w2,…,wn)Tz=(z1z2,…,zn)T,其中:

    从而

    以及

    其中wi(tx),zi(tx)∈H01(Ω),$\forall $t∈[0,+∞),i=1,2,…,n.这里I是单位矩阵,λ1是下述纽曼边值的最小正特征值:

      由于w=w(tx)=ut(ϕφ)-ut($\tilde \phi, \tilde \varphi $),z=z(tx)=vt(ϕφ)-vt($\tilde \phi, \tilde \varphi $),从而由高斯公式和纽曼边值条件有

    由椭圆算子谱理论知,Ω上关于纽曼边值条件的拉普拉斯算子-Δ是自伴算子且其逆紧,故存在一列非负特征值{λi}i=0满足0=λ0λ1λ2<…<λkλk+1<…→+∞(k→+∞)以及一列相应的特征函数ζ0(x),ζ1(x),ζ2(x),….即

    由-Δζk(x)=λζk(x)及积分准则可得

    又因

    对任给ij,特征函数ζi(x)和ζj(x)正交.从而特征函数列{ζk(x)}k=0构成空间L2(Ω)的一组正交基.设1≤p<+∞,由Sobolev嵌入定理知W01,p(Ω)⊂Lp*($\forall $pn),以及W01,p(Ω)⊂Lq($\forall $q>0,pn),其中p*=$\frac{{np}}{{n - p}}$是Sobolev嵌入临界指数.从而对任意vi(x)∈H01(Ω),本文有wi(x)=$\sum\limits_{k = 0}^\infty {{c_k}} \zeta (x)$

    由(8),(9)式得(5)式成立. (6)式类似可证.

    注1  若Ω=[0,L]⊂$\mathbb{R}$,则${\lambda _1} = {\left({\frac{{\rm{ \mathit{ π} }}}{L}} \right)^2}$.如果Ω={(x1x2)T$\mathbb{R}$2:0<x1a,0<x2b},则${\lambda _1} = \min \left\{ {{{\left({\frac{{\rm{ \mathit{ π} }}}{a}} \right)}^2}, {{\left({\frac{{\rm{ \mathit{ π} }}}{b}} \right)}^2}} \right\}$.引理1改进了文献[6]的引理2.1.

    受文献[1-16]一些方法和结论的启发,本文将给出如下结论:

    定理1  假如存在一列正定对角矩阵Pr(rS)以及正数列{αr},{αr},使得以下线性矩阵不等式成立:

    则系统(2)有唯一ω-周期解,并且当t→+∞时所有其它解随机指数型收敛到该周期解,其中:

      由系统(2)有

    对任给模式rS,考虑以下李雅普诺夫泛函:

    其中:

    $\mathscr{L}$是弱微分算子[5],则

    类似地,有:

    综上所述,可得

    再由(10),(11)式及舒尔补定理知

    因此,对任给模式rS,有

    于是由(14)式知,存在常数c0>0使得

    进一步有

    定义$\mathscr{C}$=$\mathscr{C}$([-τ0,0]×Ω$\mathbb{R}$n)是[-τ0,0]×Ω$\mathbb{R}$n中的连续函数集,并且$\mathscr{C}$×$\mathscr{C}$是由连续函数构成的巴拿赫空间,对$\forall (\phi (s, x), \varphi (s, x)) \in \mathscr{C} \times \mathscr{C}$,其范数为

    再由(15)式知

    k$\mathbb{N}$充分大,满足τ0$\sqrt {{{\rm{e}}^{ - \beta k\omega }}{c_0}} $≤0.9.定义一个庞加莱映射$\mathscr{f}$$\mathscr{C}$×$\mathscr{C}$$\mathscr{C}$×$\mathscr{C}$如下:

    这意味着$\mathscr{f}$k$\mathscr{C}$×$\mathscr{C}$上的压缩映射.从而存在唯一的不动点(${\phi ^*}, {\varphi ^*}$),满足$\mathscr{f}$k(${\phi ^*}, {\varphi ^*}$)=(${\phi ^*}, {\varphi ^*}$).进一步,有

    这说明$\mathscr{f}$(${\phi ^*}, {\varphi ^*}$)是映射$\mathscr{f}$k的不动点.由$\mathscr{f}$k的唯一性知

    $\left({{u_t}\left({{\phi ^*}, {\varphi ^*}} \right), {v_t}\left({{\phi ^*}, {\varphi ^*}} \right)} \right)$是系统(2)的解,因为

    $\left({{u_{t + \omega }}\left({{\phi ^*}, {\varphi ^*}} \right), {v_{t + \omega }}\left({{\phi ^*}, {\varphi ^*}} \right)} \right)$也是系统(2)的解.从而$\left({{u_t}\left({{\phi ^*}, {\varphi ^*}} \right), {v_t}\left({{\phi ^*}, {\varphi ^*}} \right)} \right)$是系统(2)的唯一的ω-周期解,并且所有其它解都指数型收敛到该周期解.

    注2  若忽略扩散现象,则Ar=${\mathit{\boldsymbol{\tilde A}}_r}$≡0.本文的定理1还涉及随机现象,比文献[4]的确定系统(1)更贴近现实工程.并且由于现实工程中涉及大型计算,定理1的判据是线性矩阵不等式条件,因而可以用计算机特殊工具箱编程,这也是比文献[4]判据优越的地方.

    注3  反应扩散模型带来了数学上的一些困难,本文通过在乘积空间$\mathscr{C}$×$\mathscr{C}$上定义压缩映射克服了这个困难.

  • 将系统(2)配置如下数据:

    r*=2.模式1:

    模式2:

    固定β=0.01.运用计算机Matlab LMI工具箱解线性矩阵不等式(10)-(12),得:

    由定理1知,系统(2)存在唯一的ω-周期解,并且所有其它解都指数型收敛到该周期解.

参考文献 (16)

目录

/

返回文章
返回