-
由于双向联想记忆神经网络在许多领域的成功应用(如模式识别、自动控制、信号和图像处理、人工智能、并行计算和优化问题等),其动力行为分析(如稳定性等)成了热门课题,这是因为各类神经网络的上述成功应用的前提条件是系统具有某种稳定性[1-3].文献[4]研究了一类双向联想记忆神经网络的指数型稳定性.本文欲推广文献[4]的结果到反应扩散情形,研究一类反应扩散模糊马尔科夫跳跃周期时滞系统的稳定性,并给出线性矩阵不等式条件的判据.由于线性矩阵不等式判据可以用计算机Matlab LMI工具箱编程验证其有效性,因此,在实际工程中的大型运算中占优.
文献[3]的推论4.1研究过以下模糊双向联想记忆神经网络:
该系统没考虑随机因素.本文将在此基础上同时考虑随机因素和模糊因素,所得结论会更佳.
Application of the Fixed Point Approach to Stochastic Stability Analysis for the Periodic Reaction-Diffusion T-S Fuzzy System with Time Delays
-
摘要: 利用不动点定理、变分方法、线性矩阵不等式技巧、李雅普诺夫方法和Banach压缩映射原理,给出了线性矩阵不等式条件的反应扩散马尔科夫跳跃周期模糊时滞系统的随机稳定性判据,并通过建立在乘积空间上的压缩映射克服了反应扩散模型带来的数学上的困难.最后,利用数值实例证实了所述方法的有效性.
-
关键词:
- 反应扩散 /
- 双向联想记忆神经网络 /
- 周期解 /
- 马尔科夫跳跃
Abstract: By applying the fixed-point theorem, the variational method, the linear matrix inequality (LMI) technique and the Lyapunov functional and Banach contraction mapping principle, the authors derive a new LMI-based global exponential stability criterion for the Markovian jumping reaction-diffusion T-S fuzzy BAM neural networks. It is worth mentioning that the difficulties caused by the reaction-diffusion BAM neural networks can be overcome by defining a contraction mapping on a product space. A numerical example is given to show the validity of the proposed method.-
Key words:
- reaction-diffusion /
- BAM neural networks /
- periodic solution /
- Markovian jumping .
-
[1] 牟天伟, 饶若峰.不动点原理在时滞BAM神经网络稳定性分析中的一个应用[J].西南大学学报(自然科学版), 2017, 39(6):5-9. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201706002&flag=1 [2] RAO R F, ZHONG S M, PU Z L. Fixed Point and p-Stability of T-S Fuzzy Impulsive Reaction-Diffusion Dynamic Neural Networks with Distributed Delay Via Laplacian Semigroup[J]. Neurocomputing, 2019, 335:170-184. doi: 10.1016/j.neucom.2019.01.051 [3] RAO R F, ZHONG S M, PU Z L. On the Role of Diffusion Factors in Stability Analysis for p-Laplace Dynamical Equations Involved to BAM Cohen-Grossberg Neural Network[J]. Neurocomputing, 2017, 223:54-62. doi: 10.1016/j.neucom.2016.10.036 [4] LI H F, JIANG H J, HU C. Existence and Global Exponential Stability of Periodic Solution of Memristor-Based BAM Neural Networks with Time-Varying Delays[J]. Neural Networks, 2016, 75:97-109. doi: 10.1016/j.neunet.2015.12.006 [5] RAO R F, ZHONG S M, WANG X R. Stochastic Stability Criteria with LMI Conditions for Markovian Jumping Impulsive BAM Neural Networks with Mode-Dependent Time-Varying Delays and Nonlinear Reaction-Diffusion[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1):258-273. doi: 10.1016/j.cnsns.2013.05.024 [6] ZHANG X H, WU S L, LI K L. Delay-Dependent Exponential Stability for Impulsive Cohen-Grossberg Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3):1524-1532. doi: 10.1016/j.cnsns.2010.06.023 [7] 俸卫. T-S模糊马尔可夫跳跃时滞Cohen-Grossberg神经网络的几乎必然指数稳定性[J].西南师范大学学报(自然科学版), 2015, 40(5):10-12. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201505003 [8] 黄家琳, 饶若峰. Cohen-Grossberg神经网络的全局指数稳定性[J].西南大学学报(自然科学版), 2016, 38(2):78-82. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201602013&flag=1 [9] 饶若峰, 黄家琳, 钟守铭.反应扩散BAM神经网络的全局指数稳定性[J].吉林大学学报(理学版), 2012, 50(6):1086-1090. doi: http://d.old.wanfangdata.com.cn/Periodical/jldxzrkxxb201206006 [10] 饶若峰, 王雄瑞.没有Landesman-Lazer型条件的拟线性强振动方程之无穷多解[J].数学物理学报, 2012, 32(4):744-752. doi: 10.3969/j.issn.1003-3998.2012.04.012 [11] 饶若峰.涉及第一特征值和临界指数的一类椭圆方程[J].数学进展, 2004, 33(6):703-711. doi: http://d.old.wanfangdata.com.cn/Periodical/sxjz200406006 [12] 饶若峰.具临界指数椭圆方程-Δu=λku+|u|2*-2u+f(x, u)非平凡多解存在性[J].数学年刊(A辑), 2005, 26(6):749-754. doi: http://d.old.wanfangdata.com.cn/Periodical/sxnk200506002 [13] 饶若峰.渐近非扩张映像具误差的合成隐迭代序列的弱收敛和强收敛定理[J].数学年刊(A辑), 2008, 29(4):461-470. doi: http://d.old.wanfangdata.com.cn/Periodical/sxnk200804004 [14] 饶若峰.严格渐进伪压缩映象之修正型Mann迭代算法的强收敛性[J].数学进展, 2010, 39(3):283-288. doi: 10.11845/sxjz.2010.39.03.0283 [15] 饶若峰.带误差的合成隐迭代新算法[J].数学物理学报, 2009, 29(3):823-831. doi: http://d.old.wanfangdata.com.cn/Periodical/sxwlxb200903034 [16] 饶若峰.无限族非扩张非自射映象公共不动点的迭代逼近与Cesàro均值迭代收敛性[J].数学物理学报, 2010, 30(6):1666-1676. doi: http://d.old.wanfangdata.com.cn/Periodical/sxwlxb201006032
计量
- 文章访问数: 721
- HTML全文浏览数: 549
- PDF下载数: 56
- 施引文献: 0