-
磷素是植物生长所必需的三大营养元素之一,是土地肥力提升和作物产量增长的重要保障因子[1].相关研究表明,土壤是植物磷素营养的主要来源,植物体需要的磷主要来自于土壤磷库中的速效磷[2].土壤中的磷通常分为无机磷与有机磷两大类,其中植物对土壤磷素的吸收主要以磷酸盐(H2PO4-和HPO42-)为主[3].但进入到土壤中的磷酸盐会快速与土壤中钙、铁、铝等离子结合形成难溶性的磷酸盐沉淀,或吸附在土壤胶体上降低磷酸盐的生物有效性[4].目前,农业生产上仍然采用大量施用磷肥以确保作物高产稳产,因此磷肥大量施用降低了肥料利用率[5],同时造成农田土壤磷素大量盈余,过量施用化学磷肥可以显著增加土壤表层的磷素[6],进而导致磷素径流流失[7-8],造成了不同程度的面源污染,对水体健康甚至整个区域生态环境安全构成威胁[9].
磷素在土壤中的赋存形态与化学行为因土壤类型而异,因此其植物有效性也不同[10-11].土壤磷素保持和供应能力与磷组分特征密切相关[12-13],而团聚体是土壤结构的基本单元,其分布特征和稳定性可表征土壤磷素库容与赋存形态,是评价农田管理措施对土壤磷素循环转化过程影响的重要指标[13].土壤全磷与有机磷质量分数在不同粒级团聚体中具有不同的分布特征,土壤中不同粒级的团聚体对磷表现出了不同的吸附解吸作用[14],四川盆地紫色土粘粒对磷的吸附量最大,其中含有的铁铝氧化物对磷素吸附贡献较大,石灰性紫色土沙粒中质量分数较高的钙离子可能对磷吸附也有较大贡献[15].陈恩凤等[16]通过对黑土和棕壤的研究发现小粒级微团聚体较大粒级团聚体有更高的磷储量;He等[17]发现可利用性磷在<0.1 mm粒级小团聚体中浓度最低;其他研究者发现土壤沙粒中的磷更容易发生有机磷矿化过程[18];Jalali等[19]认为土壤粉粒是控制磷素吸附和可提取性的关键组分.相关研究结果尽管存在不一致的结论,但均认为农业耕作与施肥通过影响土壤颗粒的组成比例与稳定性从而间接影响了不同粒级土壤颗粒的磷质量分数[20].目前,长期不同施肥对紫色土不同粒级团聚体中磷组分赋存特征的影响尚未有深入的研究,比如团聚体尺度上的碳、氮、磷循环之间的耦合关系还不清晰,在此基础上的农田土壤磷素形态转化及调控机制仍不清晰.因此,本研究利用紫色土丘陵区自2002年开始的长期定位试验地,主要研究目标是:1)确定西南紫色土区不同施肥方式下土壤团聚体发育特征;2)弄清不同施肥方式下团聚体与碳、氮及不同形态磷素赋存特征的关系,从而有助于揭示有机培肥措施如何改善紫色土耕地土壤团聚体结构的机制,为区域土壤养分管理和生态环境保护提供基础理论指导.
Effects of Fertilization on Soil Aggregates and Phosphorus Fractions of Sloping Upland of Purple Soil
-
摘要: 紫色土为长江上游农耕区主要土壤,多分布在山地丘陵区,其耕层较薄(30~80 cm),土壤养分质量分数普遍偏低,作物养分利用率低,但目前国内外关于团聚体尺度耕作土壤的磷素分异与循环规律的研究较少.为深入了解紫色土坡耕地长期施肥过程中的磷素养分库容和供应机制,本研究基于2002年开始的长期施肥定位试验,分析研究了西南紫色土区玉米/小麦轮作制度不同施肥方式下土壤团聚体发育特征,并结合碳、氮转化过程探讨紫色土培肥过程中磷素赋存形态及转化规律.结果表明:长期有机无机配合施肥促进大团聚体的形成,不同施肥平均重量直径(MWD)依次为:OMNPK > RSDNPK > NPK > CK;长期施肥均不同程度提高了各粒径土壤团聚体中有机碳、全氮、全磷、速效磷及各形态无机磷(Ex-P,Al-P,Ca-P,Or-P)质量分数,其中主要提高了较大团聚体(> 2,0.25~2 mm)中养分质量分数.无机肥配施粪肥处理提升有机碳和全氮的效果优于无机肥配施秸秆,而对全磷和速效磷提升效果则相反.长期有机无机配合施用可有效提高各粒径团聚体中Ex-P,Al-P,Ca-P和Or-P质量分数,并促进Al-P,Ca-P向大团聚体转移,提高了土壤对有效磷素的保持能力.有机质添加处理在提高土壤有机碳和有机磷质量分数的同时,也对土壤磷素转化、提高磷素有效性具有重要影响.Abstract: Purple soil is a major soil type in the agricultural areas in the upper reaches of the Yangtze river. It is distributed mainly in mountainous and hilly regions, with a rather shallow tillage layer (30-80 cm) and relatively low nutrient contents. Plant nutrient use efficiency is low on it. But there are few studies on the phosphorus cycling at aggregate level for agricultural soils. In order to have a better understanding of the effects of long-term fertilization on soil phosphorus stock and fractions, this study utilized the long-term fertilization experiment with an intensive wheat-maize cropping system to investigate the soil aggregate distribution, phosphorus factions and possible transformation pathways in comparison with carbon and nitrogen at aggregate levels through four fertilization treatments:no fertilizer (CK), mineral fertilizers (NPK), pig manure with mineral fertilizers (OMNPK) and crop straw residue with mineral fertilizers (RSDNPK). Soil samples from 0-20 cm soil layer were separated into four soil aggregations:large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (< 0.25 mm) and slit-clay microaggregates (< 0.053 mm), using the wet sieving method. The results showed that organic fertilizers combined with inorganic fertilization promoted the formation of larger aggregates, with the mean weight diameter (MWD) order of OMNPK > RSDNPK > NPK > CK. Long-term fertilizer application increased, in different degrees, the contents of TN, TP, available P and other P fractions (Ex-P, Al-P, Ca-P and Or-P) in soil aggregates, especially in the larger ones (> 2 mm and 0.25-2 mm) and promoted the shift of Al-P and Ca-P to the larger aggregates, thus improving the retention of available P in the soil. Compared with RSDNPK, the treatment OMNPK had better performance in enhancing SOC and TN, while the opposite was true for TP and available P. The addition of organic matter elevated the contents of soil organic carbon (SOC) and soil organic phosphorus, promoted the transformation of soil phosphorus and improved phosphorus availability.
-
Key words:
- long-term fertilization experiment /
- purple soil /
- soil aggregate /
- phosphorus form .
-
表 1 不同施肥处理的肥料类型与用肥量
生长季 处理 总氮/
(kg·hm-2)猪厩肥/
(t·hm-2)秸秆/
(t·hm-2)化肥/(t·hm-2) N P2O5 K2O 冬小麦 CK NPK 130 130 90 36 OMNPK 130 32.4 78 90 36 RSDNPK 130 7 78 90 36 夏玉米 CK NPK 150 150 90 36 OMNPK 150 33.2 90 90 36 RSDNPK 150 10 90 90 36 表 2 不同施肥处理土壤水稳性团聚体分布
处理 团聚体相对含量/% MWD/
mm>2 mm 0.25~2 mm 0.053~0.25 mm <0.053 mm CK 15.55Cc 24.42Bb 36.02Aa 24.02Ab 0.73B NPK 15.04Cd 28.27Ac 34.73Aa 21.96ABb 0.76B OMNPK 34.31Aa 22.76Bb 23.80Bb 19.13ABb 1.05A RSDNPK 27.92Ba 28.70Aa 26.87Ba 16.41Bb 1.00A 注:表中列出的值为平均值;同一列不同大写字母表示同一团聚体粒级不同施肥处理之间差异有统计学意义(p<0.05),同一行不同小写字母表示同一施肥处理不同团聚体粒级之间差异有统计学意义(p<0.05). 表 3 不同施肥处理不同粒级团聚体中P素形态质量分数
处理 团聚体粒级/mm Ex-P Fe-P Al-P Ca-P O-P Or-P CK >2 5.6±0.6Bab 7.7±0.8Ab 14.0±0.5Ca 405.8±11.5Cb 14.6±1.9Bb 71.8±2.9Ca 0.25~2 6.6±0.3Ba 7.7±1.9Ab 12.5±2.2Dab 411.2±16.4Bb 10.0±1.0Bc 70.6±1.7Da 0.053~0.25 4.8±1.5Bab 9.5±0.4Aab 15.5±4.3Da 388.6±23.6Cb 4.5±0.4Cd 71.4±8.2Ca <0.053 4.0±1.3Bb 10.0±1.1Aa 9.3±1.0Cb 464.7±17.5Ca 30.3±3.0Ba 77.7±5.6Ca NPK >2 9.5±0.4Aab 0.0±0.0Ca 100.3±0.0Bb 685.6±0.9ABb 1.6±0.1Cc 77.4±0.6Cc 0.25~2 11.4±2.4Aa 0.0±0.0Ca 136.8±17.9Ba 810.2±29.1Aa 1.3±0.1Cc 109.8±1.1Ba 0.053~0.25 7.8±1.9Ab 0.0±0.0Ca 94.6±3.8Bbc 674.0±12.2Ab 12.5±1.0Bb 106.8±6.4Ba <0.053 7.0±1.7ABb 0.0±0.0Ca 74.9±13.2Bc 625.7±3.0Bc 63.5±2.0Aa 94.6±2.6Bb OMNPK >2 3.4±2.1Ba 0.0±0.0Ca 205.8±21.4Aa 714.1±32.0Ab 0.0±0.0Ca 116.7±8.6Ab 0.25~2 4.5±0.6Ba 0.0±0.0Ca 203.4±1.7Aa 816.5±1.0Aa 0.0±0.0Ca 128.5±2.0Aa 0.053~0.25 5.0±1.9Ba 0.0±0.0Ca 212.7±10.1Aa 673.7±25.8Ac 0.0±0.0Ca 117.9±3.2Ab <0.053 3.8±0.7Ba 0.0±0.0Ca 153.7±2.4Ab 681.6±1.0Abc 0.0±0.0Ca 116.8±2.9Ab RSDNPK >2 11.5±2.9Aab 5.5±0.6Ba 33.6±3.1Cb 658.9±10.5Bb 17.5±1.2Ac 91.2±0.0Ba 0.25~2 13.1±1.4Aa 4.8±0.3Bab 69.2±8.5Ca 787.1±2.3Aa 19.9±2.0Ac 93.6±3.0Ca 0.053~0.25 9.9±0.7Ab 3.9±0.5Bc 63.7±7.4Ca 607.8±3.0Bc 40.4±5.6Aa 64.9±2.0Cc <0.053 8.8±0.5Ab 4.4±0.1Bb 21.3±5.8Cb 614.2±10.2Bc 27.8±0.4Bb 71.1±3.7Cb 注:同列数据后的不同大写字母表示同一粒径不同施肥处理之间差异有统计学意义(p<0.05),不同小写字母表示同一施肥处理不同粒径之间差异有统计学意义(p<0.05). 表 4 土壤各形态磷及其与速效磷、有机碳相关系数
Item Ex-P Fe-P Al-P Ca-P O-P Or-P 有机质 Fe-P -0.029 Al-P -0.248 -0.811** Ca-P 0.329* -0.788** 0.706** O-P 0.259 0.192 -0.480** -0.202 Or-P -0.238 -0.725** 0.876** 0.707** -.430** 有机碳 0.419** -0.353* 0.449** 0.747** -0.19 0.456** 速效P 0.085 -0.899** 0.829** 0.867** -0.111 0.762** 0.624** 注:*表明0.05水平(双侧)上相关性有统计学意义;**表明0.01水平(双侧)上相关性极有统计学意义. -
[1] DJODJIC F, BERGSTRÖM L, GRANT C. Phosphorus Management in Balanced Agricultural Systems[J]. Soil Use and Management, 2008, 21(1):94-101. doi: 10.1111/j.1475-2743.2005.tb00113.x [2] 鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥, 2003, 18(1):4-8. doi: 10.3969/j.issn.1007-6220.2003.01.002 [3] QUIQUAMPOIX H, MOUSAIN D. Enzymatic Hydrolysis of Organic Phosphorus[C]//Organic phosphorus in the environment. Wallingford: CABI, 2005: 89-112. [4] GARG S, BAHL G S. Phosphorus Availability to Maize as Influenced by Organic Manures and Fertilizer P Associated Phosphatase Activity in Soils[J]. Bioresource Technology, 2008, 99(13):5773-5777. doi: 10.1016/j.biortech.2007.10.063 [5] 张福锁, 王激清, 张卫峰, 等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5):915-924. doi: 10.3321/j.issn:0564-3929.2008.05.018 [6] 李学平, 石孝均.长期不均衡施肥对紫色土肥力质量的影响[J].植物营养与肥料学报, 2007, 13(1):27-32. doi: 10.3321/j.issn:1008-505X.2007.01.005 [7] 韩晓飞, 高明, 谢德体, 等.减磷配施有机肥对紫色土旱坡地磷素流失的消减效应[J].环境科学, 2016, 37(7):2770-2778. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkx201607046 [8] 周明华, 朱波, 汪涛, 等.紫色土坡耕地磷素流失特征及施肥方式的影响[J].水利学报, 2010, 41(11):1374-1381. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201011016 [9] 司友斌, 王慎强, 陈怀满.农田氮、磷的流失与水体富营养化[J].土壤, 2000, 32(4):188-193. doi: 10.3321/j.issn:0253-9829.2000.04.005 [10] 孙桂芳, 金继运, 石元亮.土壤磷素形态及其生物有效性研究进展[J].中国土壤与肥料, 2011(2):1-9. doi: 10.3969/j.issn.1673-6257.2011.02.001 [11] SHARMA R, BELL R W, WONG M T F. Phosphorus Forms in Soil Solution and Leachate of Contrasting Soil Profiles and Their Implications for P Mobility[J]. Journal of Soils and Sediments, 2015, 15(4):854-862. doi: 10.1007/s11368-014-1057-3 [12] 魏锴.土壤及团聚体中磷组分与磷酸酶活性间关系对不同耕作方式的响应[D].北京: 中国科学院大学, 2014. [13] GARLAND G, BVNEMANN E K, OBERSON A, et al. Phosphorus Cycling within Soil Aggregate Fractions of a Highly Weathered Tropical Soil:A Conceptual Model[J]. Soil Biology and Biochemistry, 2018, 116:91-98. doi: 10.1016/j.soilbio.2017.10.007 [14] LINQUIST B A, SINGLETON P W, YOST R S, et al. Aggregate Size Effects on the Sorption and Release of Phosphorus in an Ultisol[J]. Soil Science Society of America Journal, 1997, 61(1):160. doi: 10.2136/sssaj1997.03615995006100010024x [15] LI M, HOU Y L, ZHU B. Phosphorus Sorption-Desorption by Purple Soils of China in Relation to Their Properties[J]. Soil Research, 2007, 45(3):182. doi: 10.1071/SR06135 [16] 陈恩凤, 周礼恺, 武冠云.微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报, 1994, 31(1):18-25. doi: 10.3321/j.issn:0564-3929.1994.01.004 [17] doi: http://cn.bing.com/academic/profile?id=935c5c54944d72e38307d96623dcee60&encoded=0&v=paper_preview&mkt=zh-cn HE Z L, WILSON M J, CAMPBELL C O, et al. Distribution of Phosphorus in Soil Aggregate Fractions and Its Significance with Regard to Phosphorus Transport in Agricultural Runoff[J]. Water, Air and Soil Pollution, 1995, 83(1/2):69-84. [18] WYNGAARD N, CABRERA M L, JAROSCH K A, et al. Phosphorus in the Coarse Soil Fraction is Related to Soil Organic Phosphorus Mineralization Measured by Isotopic Dilution[J]. Soil Biology and Biochemistry, 2016, 96:107-118. doi: 10.1016/j.soilbio.2016.01.022 [19] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d26c79da9bddedc75d3165f7a9588b0c JALALI M, JALALI M. Relation between Various Soil Phosphorus Extraction Methods and Sorption Parameters in Calcareous Soils with Different Texture[J]. Science of the Total Environment, 2016, 566-567:1080-1093. [20] ØGAARD A F. Effect of Phosphorus Fertilization on the Concentration of Total and Algal-Available Phosphorus in Different Particle-Size Fractions in Norwegian Agricultural Soils[J]. Acta Agriculturae Scandinavica, Section b-Soil and Plant Science, 1996, 46(1):24-29. [21] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000. [22] 朱广伟, 秦伯强, 高光, 等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J].环境科学学报, 2004, 24(3):381-388. doi: 10.3321/j.issn:0253-2468.2004.03.003 [23] RUTTENBERG K C. Development of a Sequential Extraction Method for Different Forms of Phosphorus in Marine Sediments[J]. Limnology and Oceanography, 1992, 37(7):1460-1482. doi: 10.4319/lo.1992.37.7.1460 [24] 李辉信, 袁颖红, 黄欠如, 等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报, 2006, 43(3):422-429. doi: 10.3321/j.issn:0564-3929.2006.03.010 [25] 彭新华, 张斌, 赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报, 2003, 23(10):2176-2183. doi: 10.3321/j.issn:1000-0933.2003.10.027 [26] 仇建飞, 窦森, 邵晨, 等.添加玉米秸秆培养对土壤团聚体胡敏酸数量和结构特征的影响[J].土壤学报, 2011, 48(4):781-787. doi: http://d.old.wanfangdata.com.cn/Periodical/trxb201104014 [27] 周鑫斌, 苏婷婷, 许安定, 等.改良材料对新整理烟田土壤结构改良效应研究[J].西南大学学报(自然科学版), 2016, 38(5):31-36. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201605006&flag=1 [28] 高阿祥, 周鑫斌, 徐宸, 等.土壤调理剂对新整理烟田土壤结构改良效应研究[J].西南师范大学学报(自然科学版), 2016, 41(7):171-176. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201607029 [29] MIKHA M M, RICE C W. Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen[J]. Soil Science Society of America Journal, 2004, 68(3):809. doi: 10.2136/sssaj2004.8090 [30] 张旭辉, 李恋卿, 潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志, 2001, 20(2):16-19. doi: 10.3321/j.issn:1000-4890.2001.02.005 [31] PUGET P, CHENU C, BALESDENT J. Dynamics of Soil Organic Matter Associated with Particle-Size Fractions of Water-Stable Aggregates[J]. European Journal of Soil Science, 2000, 51(4):595-605. doi: 10.1111/ejs.2000.51.issue-4