-
茶树(Camellia sinensis)是世界上三大饮料作物之一,具有重要的经济、保健和生态价值.目前茶树的分布最北界限达北纬42°,最南达南纬33°,遍及四大洲的50多个国家[1].茶树的原产地位于我国云贵高原以大娄山脉为中心的地域,其中云南普洱茶和贵州绿茶均以独特的风味品质而被大家熟知[2-3];茶树原产地得天独厚的自然环境和悠久的种茶历史造就了丰富的古茶树资源,由于其具有广泛的遗传变异和大量原始的优良基因,近年来愈来愈受到茶叶界的关注[4].贵阳花溪古茶树栽培历史悠久,分布广泛,资源丰富,仅久安乡境内就具有保护价值的古茶树54 000多株,占地266.67余hm2,其中2000年以上的古茶树有19株,1 000~1 500年之间的古茶树有1 450株.因此该区域的古茶树资源是开展茶树起源、演化、种质创新和新品种选育等研究的天然宝库.随着分子生物学发展,以DNA分子标记为标志的基因组研究进展迅速,RAPD[5-7],RFLP[8],AFLP[9-10],SSR[11-12],ISSR[13-14]和EST-SSR[15]等标记已用于茶树种质资源和品种鉴别、遗传多样性、亲缘关系和遗传演化等研究.单核苷酸多态性(Single nucleotide polymorphism,SNP)技术具有自动化程度高、通量大、速度快、易于标准化操作、适合大规模研究及基因分型等优点.李志远等[16]搜集生产上主要甘蓝品种,利用重测序数据与参考基因组进行比对开发了2.54×106个SNP标记.马宇等[17]利用SLAF-seq测序技术获得1 105 347个向日葵SLAF标签,其中多态性SLAF标签共有86 985个,获得了414 692个群体SNP标记.李敏等[18]采用SLAF-seq技术获得了277 333个乔木柳SLAF标签,其中多态性标签99 526个,开发了9 488个SNP位点.刘丽华等[19]仅需14个SNP位点就可将378份测试小麦中的99.5%的材料区分开.本试验拟采用SNP技术,对贵阳花溪古茶树进行分子标记开发,获得全基因组范围内的分子标记,了解贵阳花溪古茶树的遗传多样性、群体结构和遗传进化,为茶树特异SNP标记开发、资源鉴定分析、高密度遗传连锁图谱构建和重要农艺性状的关联分析等奠定基础.
SNP Analysis of the Genetic Evolution of Ancient Camellia sinensis Trees from Huaxi, Guiyang
-
摘要: 试验采用SNP(单核苷酸多态性)技术对贵阳花溪古茶树资源的遗传多样性、群体结构和遗传进化进行了分析.结果表明,利用生物信息学分析古茶树样品的重测序数据,获得了1 656 258个SLAF标签,古茶树样品平均测序深度为24.21x,其中多态性的SLAF标签有462 897个,共得到283 376个高一致性的群体SNP标记.从基于SNP标记获得的进化树可以看出,来自相近地方的古茶树在进化树上基本上处于相近位置,但是花溪古茶树存在着广泛的遗传变异,主成分分析(PCA)获得了与进化树一致的结果.群体结构分析可清晰地把古茶树资源分为乔木型和灌木型2个类群.乔木型古茶树位于进化树下部,而灌木型古茶树处于进化树上部,表明茶树是由乔木型向灌木型进化的.Abstract: In the present study, the SNP (single nucleotide polymorphism) technique was used to analyze the genetic diversity, population structure and genetic evolution of ancient Camellia sinensis trees from Huaxi, Guiyang. In bioinformatics analysis of the resequencing data, with an average sequencing depth of 24.21x, a total of 1, 656, 258 SLAF tags were obtained, of which 462, 897 were polymorphic SLAF tags and 283, 376 were highly consistent population SNP markers. The phylogenetic tree analysis based on these SNP markers indicated that there existed abundant genetic variation among Huaxi tea accessions, and the accessions from the same place were generally clustered together, which was further verified by principal component analysis (PCA). Population structure analysis divided these resources into two distinct groups:an arbor-type group and a shrub-type group. The arbor group and the shrub group were located at the bottom and the top of the phylogenetic tree, respectively, indicating that the teas evolved from the arbor type to the shrub type.
-
表 1 供试古茶树的来源和树型
序号 古茶树资源 来源 树型 1 KNZ-1 贵阳开阳 灌木 2 KNZ-2 贵阳开阳 灌木 3 KNZ-3 贵阳开阳 灌木 4 HGL-1 贵阳花溪高坡乡 乔木 5 HGL-2 贵阳花溪高坡乡 灌木 6 HGL-3 贵阳花溪高坡乡 乔木 7 HGK-1 贵阳花溪高坡乡 乔木 8 HGK-2 贵阳花溪高坡乡 乔木 9 HGK-3 贵阳花溪高坡乡 乔木 10 HGK-4 贵阳花溪高坡乡 乔木 11 HQZ-1 贵阳花溪黔陶乡 灌木 12 HQZ-2 贵阳花溪黔陶乡 灌木 13 HQZ-3 贵阳花溪黔陶乡 灌木 14 XSHTLZ-1 贵州习水 乔木 15 XSHTLZ-2 贵州习水 乔木 16 XSHTLZ-3 贵州习水 乔木 17 XSHTLZ-4 贵州习水 灌木 18 HJ01 贵阳花溪久安乡 灌木 19 HJ02 贵阳花溪久安乡 灌木 20 HJ03 贵阳花溪久安乡 灌木 21 HJ04 贵阳花溪久安乡 灌木 22 HJ05 贵阳花溪久安乡 灌木 23 HJ06 贵阳花溪久安乡 灌木 24 HJ07 贵阳花溪久安乡 灌木 25 HJ08 贵阳花溪久安乡 灌木 26 HJ09 贵阳花溪久安乡 灌木 27 HJ10 贵阳花溪久安乡 灌木 28 N1 贵阳花溪久安乡 灌木 29 N12 贵阳花溪久安乡 灌木 30 N14 贵阳花溪久安乡 灌木 31 N22 贵阳花溪久安乡 灌木 32 N30 贵阳花溪久安乡 灌木 33 N31 贵阳花溪久安乡 灌木 34 N252 贵州普定 灌木 35 N254 贵州普定 乔木 36 N282 贵州务川 灌木 37 N283 贵州务川 乔木 38 N291 贵州务川 灌木 39 N315 贵州安顺 灌木 40 N318 贵州安顺 灌木 41 N319 贵州安顺 灌木 42 N323 贵阳花溪久安乡 灌木 43 N629 贵阳花溪久安乡 灌木 44 N636 贵州安顺 灌木 45 N638 贵州安顺 灌木 46 N645 贵州安顺 灌木 47 J9 贵阳花溪久安乡 灌木 48 SH8 贵阳花溪高坡乡 灌木 表 2 古茶树SNP信息统计表
样品编号 SNP数 完整度/% 杂合率/% KNZ-1 267 182 94.28 17.20 KNZ-2 261 148 92.15 15.99 KNZ-3 265 078 93.54 16.39 HGL-1 235 165 82.98 11.39 HGL-2 264 280 93.26 18.26 HGL-3 239 824 84.63 11.53 HGK-1 237 268 83.72 10.83 HGK-2 238 075 84.01 11.37 HGK-3 232 226 81.94 9.66 HGK-4 234 489 82.74 10.63 HQZ-1 262 409 92.60 16.74 HQZ-2 262 712 92.70 16.77 HQZ-3 262 814 92.74 21.37 XSHTLZ-1 234 679 82.81 10.60 XSHTLZ-2 228 576 80.66 11.37 XSHTLZ-3 233 921 82.54 11.20 XSHTLZ-4 261 791 92.38 22.38 HJ01 262 087 92.48 17.55 HJ02 258 688 91.28 15.88 HJ03 269 149 94.97 18.33 HJ04 268 100 94.60 17.56 HJ05 272 163 96.04 18.76 HJ06 271 077 95.65 18.68 HJ07 268 399 94.71 18.30 HJ08 269 246 95.01 17.30 HJ09 272 653 96.21 21.52 HJ10 272 658 96.21 19.21 N1 257 112 90.73 14.73 N12 268 056 94.59 17.20 N14 268 668 94.80 18.05 N22 270 118 95.32 18.55 N30 268 319 94.68 16.35 N31 270 924 95.60 19.21 N252 252 640 89.15 13.85 N254 235 434 83.08 10.30 N282 269 566 95.12 22.64 N283 253 691 89.52 16.28 N291 266 381 94.00 22.24 N315 267 690 94.46 16.69 N318 265 994 93.86 14.68 N319 262 401 92.59 16.21 N323 269 870 95.23 17.98 N629 268 818 94.86 17.43 N636 271 418 95.78 18.19 N638 269 035 94.93 17.90 N645 273 777 96.61 21.85 J9 268 917 94.89 18.71 SH8 270 537 95.46 25.21 -
[1] 闵天禄.世界山茶属的研究[M].昆明:云南科技出版社, 2000. [2] 罗美玲, 田洪敏, 杨雪梅, 等.电子鼻技术对普洱熟茶香气判别的研究[J].西南大学学报(自然科学版), 2018, 40(8): 16-24. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201808003 [3] 李俊, 蔡滔, 周雪丽, 等.贵州绿茶品质分析研究[J].中国茶叶, 2017, 39(7): 22-26. doi: 10.3969/j.issn.1000-3150.2017.07.012 [4] GUNASEKARE M T K. Applications of Molecular Markers to the Genetic Improvement of Camellia Sinensis L. (Tea)[J]. Journal of Horticultural Science and Biotechnology, 2007, 82(2): 161-169. doi: 10.1080/14620316.2007.11512214 [5] 陈亮.茶组植物的分子系统学研究——遗传多样性与分类[D].杭州: 浙江大学, 2002: 63-64. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y430395 [6] KAUNDUN S S, MATSUMOTO S. Heterologous Nuclear and Chloroplast Microsatellite Amplification and Variation in Tea, Camellia Sinensis[J]. Genome, 2002, 45(6): 1041-1048. doi: 10.1139/g02-070 [7] KAUNDUN S, PARK Y G. Genetic Structure of Six Korean Tea Populations as Revealed by RAPD-PCR Markers[J]. Crop Science, 2002, 42(2): 594-601. doi: 10.2135/cropsci2002.5940 [8] MATSUMOTO S, KIRⅡWA Y, TAKEDA Y. Differentiation of Japanese Green Tea Cultivars as Revealed by RFLP Analysis of Phenylalanine Ammonia-lyase DNA[J]. Theoretical and Applied Genetics, 2002, 104(6): 998-1002. doi: 10.1007/s00122-001-0806-z [9] PAUL S, WACHIRA F N, POWELL W, et al. Diversity and Genetic Differentiation among Populations of Indian and Kenyan Tea (Camellia Sinensis (L.) O. Kuntze) Revealed by AFLP Markers[J]. Theoretical and Applied Genetics, 1997, 94(2): 255-263. doi: 10.1007/s001220050408 [10] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_069249eabd7f318355a2ba745e822dd6 MISHRA R K, CHAUDHARY S, AHMAD A, et al. Molecular Analysis of Tea Clones (Camellia Sinensis) using AFLP Markers[J]. International Journal of Integrative Biology, 2009, 5(2): 130-135. [11] MONDAL T K. Assessment of Genetic Diversity of Tea (Camellia sinensis (L.) O. Kuntze) by Inter-simple Sequence Repeat Polymerase Chain Reaction[J]. Euphytica, 2002, 128(3): 307-315. doi: 10.1023/A:1021212419811 [12] FANG W, CHENG H, DUAN Y, et al. Genetic Diversity and Relationship of Clonal Tea (Camellia sinensis) Cultivars in China as Revealed by SSR Markers[J]. Plant Systematics and Evolution, 2012, 298(2): 469-483. doi: 10.1007/s00606-011-0559-3 [13] 王亨洪, 索化夷, 杨坚, 等.川渝地区重要野生大茶树遗传多样性的ISSR分析[J].茶叶科学, 2009, 29(2): 168-172. doi: 10.3969/j.issn.1000-369X.2009.02.013 [14] 侯渝嘉, 何桥, 梁国鲁, 等.茶树杂交后代的ISSR分析[J].西南农业大学学报(自然科学版), 2006, 28(2): 267-270. doi: 10.3969/j.issn.1673-9868.2006.02.023 [15] 牛素贞, 刘玉倩, 杨锦标, 等.贵州茶树地方品种的EST-SSR遗传多样性分析[J].浙江农业学报, 2012, 24(5): 836-841. doi: 10.3969/j.issn.1004-1524.2012.05.016 [16] 李志远, 于海龙, 方智远, 等.甘蓝SNP标记开发及主要品种的DNA指纹图谱构建[J].中国农业科学, 2018, 51(14): 2771-2787. doi: 10.3864/j.issn.0578-1752.2018.14.014 [17] 马宇, 于海峰, 侯建华, 等.基于SLAF-seq技术的向日葵SNP标记开发与利用[J].分子植物育种, 2018, 16(18): 5994-6000. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201818020 [18] 李敏, 郭聪, 王莹, 等.基于SLAF-seq技术的乔木柳SNP位点开发[J].西南农业学报, 2018, 31(5): 891-895. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201805003 [19] 刘丽华, 庞斌双, 刘阳娜, 等.基于SNP标记的小麦高通量身份鉴定模式[J].麦类作物学报, 2018, 38(5): 529-534. doi: http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201805004 [20] 盛中飞.提莫菲维与野燕麦杂交后代外源遗传物质的检测[D].贵阳: 贵州大学, 2010: 16. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D215035 [21] LI H, DURBIN R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform[J]. Bioinformatics, 2009, 25(14): 1754-1760. doi: 10.1093/bioinformatics/btp324 [22] MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit: a MapReduce Framework for Analyzing Next-generation DNA Sequencing Data[J]. Genome Research, 2010, 20(9): 1297-1303. doi: 10.1101/gr.107524.110 [23] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/map Format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079. doi: 10.1093/bioinformatics/btp352 [24] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Lkelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121 [25] doi: http://cn.bing.com/academic/profile?id=dd63fd2642d38f24d220713d22692d24&encoded=0&v=paper_preview&mkt=zh-cn SAITOU N, NEI M. The Neighbor-joining Method: a New Method for Reconstructing Phylogenetic Trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425. [26] ALEXANDER D H, NOVEMBRE J, LANGE K. Fast Model-based Estimation of Ancestry in Unrelated Individuals[J]. Genome Research, 2009, 19(9): 1655-1664. doi: 10.1101/gr.094052.109 [27] DE HOON M J L, IMOTO S, NOLAN J, et al. Open Source Clustering Software[J]. Bioinformatics, 2004, 20(9): 1453-1454. doi: 10.1093/bioinformatics/bth078 [28] 马建强, 姚明哲, 陈亮.茶树遗传图谱研究进展[J].茶叶科学, 2010, 30(5): 329-335. doi: 10.3969/j.issn.1000-369X.2010.05.001 [29] 金惠淑, 梁月荣, 陆建良.中、韩两国主要茶树品种基因组DNA多态性比较研究[J].茶叶科学, 2001, 21(2): 103-107. doi: 10.3969/j.issn.1000-369X.2001.02.006 [30] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000222492 LAI J A, YANG W C, HSIAO J Y. An Assessment of Genetic Relationships in Cultivated Tea Clones and Native Wild Tea in Taiwan using RAPD and ISSR Markers[J]. Botanical Bulletin of Academia Sinica, 2001, 42(2): 93-100. [31] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/14620316.2001.11511410 WACHIRA F, TANAKA J, TAKEDA Y. Genetic Variation and Differentiation in Tea (Camellia sinensis) Germplasm Revealed by RAPD and AFLP Variation[J]. The Journal of Horticultural Science and Biotechnology, 2001, 76(5): 557-563. [32] BALASARAVANAN T, PIUS P K, RAJ KUMAR R, et al. Genetic Diversity among South Indian Tea Germplasm (Camellia Sinensis, C. Assamica and C. Assamica Spp. Lasiocalyx) using AFLP Markers[J]. Plant Science, 2003, 165(2): 365-372. doi: 10.1016/S0168-9452(03)00196-1