-
矢量基尔霍夫公式将空间任意一点的电(磁)场表为封闭曲面上的场强及其法向导数,由此奠定了光学的衍射理论基础,同时也是电磁场散射理论中的一个重要公式[1-9].然而对该公式的证明在已有的论述中均出现一些缺漏、错误之处:文献[10-11]在使用矢量积分时对变量及方向的判定有误,而文献[12]则在使用矢量恒等式时对于梯度等算符的含义产生混淆.黄晓伟等在文献[13]中指出上述错误在于对算符∇′与
$\overset{\wedge }{\mathop{n}}$ 的作用关系的认知方式,但解释有误,且未能更清晰地意识到证明的核心问题所在故而转向使用了数值方法进行验证,这既不必要也不完备;同时,文献[13]在提出完整证明时给予引理的方式未能正面回应前述问题,对公式中的物理部分挖掘较少,并不利于模型的构建.本文首先对已有的证明方法展开讨论,通过比对不同的认知观点及解释,暴露出已有证明中的缺陷及应当把握的核心要素;之后对一系列易引起混淆的点进行剖析,建立更为明晰的物理图像;最后将对公式的成立条件进行分析,给予严格证明.
Error in Vector Kirchhoff Formula Proof Process and Strict Proof Method
-
摘要: 揭示了在各类经典著作中,矢量基尔霍夫公式证明过程中具示范性、普遍性的错误,对其来源、特征进行了剖析,理清了证明的线索,突破了证明过程中的核心障碍.指出:1)矢量基尔霍夫公式的成立条件是被积函数在积分区域上具有连续二阶偏导数;2)作为一个积分定理,其证明无法直接在微分尺度进行.同时,矢量微分算符在自然坐标系中的表达须特别注意基矢选择及变换,尤其针对积分曲面与等势面的法向量.
-
关键词:
- 矢量基尔霍夫公式 /
- Stratton-Chu公式 /
- 矢量微分算符 /
- 自然坐标系 /
- 法向基矢
Abstract: Vector Kirchhoff formula is the basis of the optical diffraction theory, but the certification and understanding of it is not flawless in all kinds of classic works. Although such flaws are analyzed by some researchers in the literature available, but such analyses are not complete. Mainly reflected in:1. The Stratton-Chu formula in integral surface normals base vector processing problems:1) it's misused as a constant vector, 2) although it is treated as a variable, it fails to consider the geometrical constraints of the surface itself, resulting in the calculation error. 2. The error of the differential operator in the natural coordinate system is to confuse the "equipotential surface" of the integral surface and the integrand, which will cause the expression of the method to the base vector; 3. The transition of the original form of vector Sommerfeld radiation condition to the scalar form is not proved, and abandoning the two related to another argument lacks the physical connotation. These issues shows us in on the source model involving the surface integral vector analysis must pay attention to several points:in the same surface integral problem must strictly distinguish between the integrand equipotential surface normal vector and normal vector integral surface; The expression of the vector differential operator in the natural coordinate system must pay special attention to the selection and transformation of the base vector. We draw two conclusions through proof:1. the vector kirchhoff formula is established if the integrand has a continuous second partial derivative in the integral region; 2. (vector kirchhoff formula) as an integral theorem, just on the analysis of the differential scale unable to provide complete and correct. At the same time, firmly grasp the physical image, this paper starting from the special case analysis, combining tensor operations, proved by mistake put item details, in the process of processing by integral and gives the strict proof of vector kirchhoff formula, therefore, this paper has some demonstration. -
[1] JACKSON J. D. Classical Electrodynamics[M]. 3th ed. New York:Wiley-Interscience, 1998. [2] BORN M, WOLF E. Principles of Optics[M]. 6th ed. New York:Pergamon Press Ltd, 1986. [3] JOSÉ LUIS PALACIOS, JOSÉ M. Renom. Broder and Karlin's Formula for Hitting Times and the Kirchhoff Index[J]. International Journal of Quantum Chemistry, 2011, 111(1):35-39. doi: 10.1002/qua.22396 [4] 王晓方, 王晶宇.菲涅耳波带板应用于聚变靶的高分辨X射线成像分析[J].物理学报, 2011, 60(2):495-501. doi: http://d.old.wanfangdata.com.cn/Periodical/wlxb201102072 [5] 刘普生, 王建东, 刘义东.角谱理论的近似公式[J].西南大学学报(自然科学版), 2014, 36(9):118-121. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2014-09-118&flag=1 [6] 陈学文, 罗源源, 张家伟, 等.光的衍射的理论分析及Mathematica仿真模拟[J].西南师范大学学报(自然科学版), 2018, 43(11):156-161. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201811025 [7] 洪熙春, 黄维刚, 王绍民.失调光学系统的衍射积分公式[J].物理学报, 1982, 31(12):1655-1663. doi: 10.3321/j.issn:1000-3290.1982.12.009 [8] 刘春香, 程传福, 任晓荣, 等.随机表面散射光场的格林函数法与基尔霍夫近似的比较[J].物理学报, 2004, 53(2):427-435. doi: 10.3321/j.issn:1000-3290.2004.02.019 [9] 盛新庆.电磁理论、计算、应用[M].北京:高等教育出版社, 2016. [10] doi: http://d.old.wanfangdata.com.cn/Periodical/cjjs201405006 KONG J. A. Electromagnetic Wave Theory[M]. NewYork:Wiley-Interscience, 1986. [11] 葛德彪, 魏兵.电磁波理论[M].北京:科学出版社, 2011. [12] 张善杰.工程电磁理论[M].北京:科学出版社, 2009. [13] 黄晓伟, 盛新庆.矢量基尔霍夫公式经典证明的漏洞与新的严格证明[J].物理学报, 2017, 66(16):164201-1-164201-10. doi: http://d.old.wanfangdata.com.cn/Periodical/wlxb201716012 [14] 杨儒贵.高等电磁理论[M]. 2版.北京:高等教育出版社, 2008. [15] SOMMERFELD A. Partial Differential Equations in Physics[M]. New York:Academic Press, 1949.
计量
- 文章访问数: 707
- HTML全文浏览数: 575
- PDF下载数: 100
- 施引文献: 0