-
冷浸田是我国西南地区主要的水稻田之一,其面积约346万hm2,分别占全国稻田和低产稻田面积的15%和44%[1-2].冷浸田由于长期受地表水及地下水渍害,导致土壤水热不协调、物理性质差、有机质积累多、还原性有毒物质累积等[3-7],直接或间接影响水稻的生长发育及产量水平.有效的田间管理措施,能够提高冷浸田作物养分利用率,增加作物产量.而氮肥管理是影响作物产量最直接的因素,氮素营养状况与水稻产量等密切相关[8].氮肥在我国水稻增产中有重要贡献[9-10],合理施用氮肥是提高水稻产量、维持农田氮素平衡、保证土壤可持续利用的途径[8],但是氮肥施用过量则导致作物易遭受病虫害和易倒伏等问题,进而影响水稻产量[11-12].在福建冷浸田试验中发现,增施氮肥显著促进了水稻分蘖,提高了水稻产量[6].但过量施用氮肥,将引起氮肥利用率的下降,导致环境污染[13-14].前人研究表明,氮肥施用时期对水稻的生长发育产生影响,在农民重施基肥的基础上,采用前氮后移,能够提高水稻成穗率,使有效光合面积和光合速率提高,促进中后期干物质积累,提高产量[15-17].冷浸田由于长期处于水饱和状态,水稻移栽初期地温低,土壤养分尤其是氮释放慢,影响水稻生长前期养分吸收和分蘖,从而影响产量;合理施肥能减少这种不利影响.目前针对冷浸田的养分管理研究大部分集中于通过适量增施磷钾肥[3, 5, 8, 18-19],来改善土壤有效磷钾质量分数,促进水稻增产;而氮肥用量及氮肥运筹方式对西南地区冷浸田水稻产量和氮肥吸收利用率的影响却鲜有报道.因此,本研究以西南地区冷浸田为研究对象,研究不同氮肥用量和不同氮肥运筹方式对水稻产量及其构成、氮素吸收和利用率的影响,以期为西南地区冷浸田水稻增产和氮肥合理施用提供理论依据.
全文HTML
-
试验在重庆市铜梁区小林镇鱼龙村农户稻田中进行,试验点属典型亚热带季风气候,年平均气温17.8 ℃,年均降雨量1 003 mm.供试土壤为遂宁组紫色泥岩发育的石灰性紫色水稻土,属冷浸田,土壤理化性质如表 1所示.种植制度为单季稻制,4月下旬插秧,8月下旬收获.
-
试验设氮肥用量和氮肥运筹两个因素.氮肥用量设5个水平:0(N0),90(N90),120(N120),150(N150),180(N180) kg/hm2,以上处理均按底肥—分蘖肥—穗粒肥为60-40-0的比例施用.
氮肥运筹是在施氮量为150 kg/hm2基础上,按底肥—分蘖肥—穗粒肥比例60-40-0(T1),40-60-0(T2)和40-20-40(T3)设3个运筹方式;同时设置控释氮肥一次施用处理(T4),以60%控释尿素和40%普通尿素混合,作底肥一次撒施.除控释氮肥处理,其他处理氮肥用普通尿素;磷肥和钾肥分别为过磷酸钙和氯化钾,用量为75 kg/hm2(P2O5)和90 kg/hm2(K2O),磷钾肥均作底肥一次撒施.分蘖肥和穗粒肥分别于播种后80,104天施用.
每个处理设3次重复,共24个小区,随机区组排列.小区面积为20 m2(4m × 5m),各小区单独起田埂,并用塑料薄膜覆盖包埋,保证各小区能独立排灌,田水互不渗窜.水稻品种为缙优217,株行距分别为20 cm和30 cm,水稻于3月1日进行播种育秧,4月22日进行移栽,8月24日收获,其他田间管理根据当地农民习惯进行,并在处理间保持一致.
-
水稻收获时,在小区的对角线上按S型选取5个点,每点取有代表性的植株4穴,每个小区共取20穴,整株取回用于考种及养分质量分数测定,其余植株分小区单独收获,测定实际产量.植株氮质量分数测定采用常规方法[20].
-
水稻籽粒氮素累积量(kg/hm2)=籽粒产量×籽粒氮质量分数;
水稻秸秆氮素累积量(kg/hm2)=秸秆产量×秸秆含氮量;
籽粒收获指数HI(%)=籽粒产量/生物量×100;
氮收获指数NHI(%)=(籽粒吸氮量/地上部总吸氮量)×100;
肥料氮表观利用率表征作物对肥料中氮的回收效率,REN=(N-N0)/F*100;
肥料氮偏生产力表征投入单位氮肥所生产的作物产量,PFPN=Y/F;
肥料氮贡献率指施氮增加的产量占总产量的比率,FCRN=(Y-Y0)/Y*100;
肥料氮氮生理利用率指作物吸收单位氮素所收获的籽粒产量的增加量,PEN=(Y-Y0)/(N-N0);
式中:Y为施氮肥处理作物籽粒产量;Y0为未施氮处理作物籽粒产量;N为施氮处理作物收获时地上部总吸氮量;N0为未施氮收获时地上部总吸氮量;F为施氮量;
采用单因素方差分析进行差异显著性检验,显著性在0.05水平有统计学意义;数据处理与统计分析在Microsoft Excel 2016和SPSS 20.0软件中进行.
1.1. 试验材料
1.2. 试验设计
1.3. 测定方法
1.4. 数据处理与统计分析
-
不同氮肥用量对水稻产量的影响存在差异(图 1a),其中以施氮150 kg/hm2产量最高,为9 466.65 kg/hm2.氮肥用量在120,150,180 kg/hm2时产量差异无统计学意义,但比不施氮肥处理分别增产8.9%,14.4%,11.3%,地上部生物量分别增加了17.39%,18.56%和21.01%.不同氮肥用量处理的籽粒收获指数从大到小依次为:N0,N90,N150,N120,N180. 3种氮肥运筹方式和控释氮肥处理间水稻产量及地上部生物量差异均无统计学意义(图 1b).但是,在同一施氮水平下(150 kg/hm2),3种氮肥运筹方式和控释氮肥处理间水稻收获指数从大到小依次为:T1,T3,T2,T4,处理T1,T2,T3间差异无统计学意义,但均高于控释氮肥处理T4.
-
从施肥对水稻产量结构的影响来看(表 2),不同氮肥用量处理均显著提高了水稻成熟期的有效穗数,其中以施氮180 kg/hm2最高,比不施氮肥处理显著提高了27.37%.而对于每穗粒数而言,不同氮肥用量差异并无统计学意义,但是穗粒数和结实率较低.相比N0处理,N180处理显著降低了水稻结实率和千粒质量,降幅分别为8.25%和3.99%.
由表 2可知,氮肥运筹处理之间对水稻有效穗数和每穗粒数差异无统计学意义,但与控释氮肥处理T4相比,3种施氮运筹方式处理水稻结实率均显著提高了5.35%~8.47%.在氮肥运筹方式中,处理T3千粒质量显著高于其他3种氮肥运筹处理.
-
不同氮肥用量水稻氮素吸收量及表观平衡如表 3所示.秸秆、地上部氮素吸收量在不同氮肥用量处理间从大到小依次为:N180,N150,N120,N90,N0,其中,以施氮量180 kg/hm2为最高,秸秆和地上部氮素吸收量比不施氮肥处理显著增加68.5%和37.6%,而秸秆及地上部氮素累积量在处理N120,N150,N180间差异均无统计学意义.不同氮肥用量下籽粒氮素吸收量最高为N150,比对照(N0)显著提高了31.40%,虽和N120,N180处理没有明显差异,但却表现出高于二者的趋势.
在相同氮肥用量下,不同氮肥运筹处理对籽粒氮素吸收量没有显著影响.施用控释氮肥(T4)显著提高了秸秆和地上部氮素吸收量,比其他氮肥运筹处理高51.70%~63.19%和21.6%~23.7%,而T1,T2和T3处理间差异均无统计学意义.
-
不同氮肥用量处理间氮收获指数存在差异(表 4),均值从大到小依次为:N90,N150,N120,N180,但N120,N150和N180处理间差异并没有统计学意义. N120,N150,N180处理间肥料氮表观利用率差异无统计学意义,但是以N150处理最高,为30.75%,比N90,N120,N180高8.11,2.37,3.54个百分点.随着氮肥用量的增加,肥料氮偏生产力依次降低,且不同氮肥用量下肥料氮偏生产力之间差异有统计学意义. N150处理的肥料贡献率显著高于N90和N120处理,但不同处理间肥料氮生理利用率差异并无统计学意义.
在相同施氮量(150 kg/hm2)时,相对于控释氮肥T4处理,T1,T2,T3处理氮收获指数分别显著提高了12.74%,15.81%,14.85%,而T4处理的肥料氮表观利用率高达55.1%,比其他3个处理提高24.35%~26.3%.说明施用控释氮肥显著提高了水稻对氮素的吸收利用率,但是吸收的氮主要保留在茎叶中.不同氮肥运筹处理间肥料氮偏生产力和肥料贡献率差异无统计学意义.而相比T4处理,处理T3显著提高了肥料氮的生理利用率.
2.1. 氮肥用量和运筹对水稻产量及地上部生物量的影响
2.2. 氮肥用量和运筹对水稻产量结构的影响
2.3. 不同氮肥用量和运筹处理的氮素吸收量及表观平衡
2.4. 氮肥用量和运筹对氮素利用率的影响
-
合理施用氮肥是提高冷浸田氮肥利用率和生产力的重要途径.本研究结果表明,N120,N150,N180处理水稻籽粒产量和地上部生物量均显著高于对照(N0)和低氮处理(N90),虽然三者间差异并没有统计学意义,但N150籽粒收获指数显著高于N120,N180处理(图 1),原因主要是在施氮量为150 kg/hm2条件下,通过提高肥料氮贡献率和肥料氮表观利用率(表 4),从而提高了籽粒氮素吸收量和结实率(表 3),进而提高了水稻产量和收获指数(图 1).可见在西南紫色土丘陵冷浸水稻田中,氮肥施用量维持在150 kg/hm2可以明显提高水稻对氮肥的吸收利用,以保证水稻的产量和生物量.前人研究表明,广东、福建、安徽冷浸田氮肥推荐量分别为165~195、105~153.9,153.9~169 kg/hm2 [6, 8, 25],和本研究氮肥推荐量(120~150 kg/hm2)大致相同,而相比于常规稻田氮肥推荐量(140~206 kg/hm2)[25],冷浸田氮肥用量属于低限范围.其原因可能是本研究的地块有较高的基础地力,不施用氮肥处理中产量也高达8 273.70 kg/hm2.而在安徽沿江稻区田块基础地力为3 750~4 500 kg/hm2 [15],西南常规稻区(四川、重庆、云南和贵州4省(市))田块基础地力为6 488.6~7 772.1 kg/hm2 [26],因此,本试验冷浸田的基础地力远高于常规稻田.前人研究发现,常规稻田有机质和有效氮质量分数分别为17.2~23.9,93.2~95.3 mg/kg[26-27],远低于本试验冷浸田有机质和有效氮质量分数(34.2 g/kg和232.2 mg/kg).另外,于飞等[25]总结2004年以来氮肥效应研究,得出我国水稻氮肥表观利用率为39%,而本研究中,不同氮肥施用量水稻氮表观利用率(除控释氮肥处理外)均小于39%,原因可能是冷浸田含有大量的还原性亚铁、有机酸等物质,其会抑制水稻地上部和根系的生长,降低叶片叶绿素质量分数,从而影响水稻对肥料氮的高效吸收利用[28].
-
水稻对氮素吸收不仅与氮肥用量有关,而且受氮肥运筹策略影响较大[25].前人研究表明[15-17],在长江下游及北方稻区,氮肥运筹以基肥、分蘖肥、穗粒肥分3次施用为宜.而本研究表明,氮肥分两次(底肥60%,分蘖肥40%)施用较为适宜,即前氮后移对冷浸田水稻籽粒产量和地上部生物量无显著影响,原因可能是由于西南稻区水稻生长发育受前期低温、后期高温天气的影响[29-30];以及冷浸田养分释放缓慢,能够满足水稻生长后期养分需求.与王飞等[6]在福建冷浸田的研究结果相一致.虽然处理T3的水稻产量与处理T1,T2相比差异并无统计学意义,但由于其显著提高了水稻千粒质量(表 2),而对产量有增加趋势(图 1),说明冷浸田适当降低基蘖肥、增加穗粒肥可以有效提高后期干物质的积累,从而增加水稻的千粒质量,提高产量水平.王斌等[31]研究表明,控释尿素肥料具备最高和最稳定的氮素利用效果,水稻地上部特别是秸秆的吸氮量远高于常规尿素.本研究也表明,相比于常规尿素处理(T1),控释氮肥处理秸秆氮素吸收量提高了57.1%,且控释氮肥处理肥料氮表观利用率显著高于其余3种氮肥运筹处理(表 4),原因主要是施用控释氮肥后明显提高了水稻有效穗数(表 2),从而提高了水稻地上部生物量和水稻产量(图 1),进而提高了肥料氮素利用率.另外,由于控释氮肥养分缓慢释放,释放的氮素被水稻吸收后主要保留在秸秆中(表 3),而能够达到减少氮素损失和减少环境污染的作用.因此,考虑到西南冷浸稻田基础地力氮素水平高等特点,控释氮肥的施用量及释放速率的调整还需进一步的研究.
3.1. 氮肥用量对水稻产量及氮素利用的影响
3.2. 氮肥运筹对水稻产量及氮素利用的影响
-
1) 西南地区冷浸田在施氮量为90~180 kg/hm2均显著提高籽粒产量,为8 889.6~9 466.6 kg/hm2.其中氮肥用量为150 kg/hm2时,籽粒产量和肥料氮利用率达最高.
2) 在施氮量同为150 kg/hm2条件下,氮肥运筹以普通尿素按底肥:分蘖肥:穗肥=60:40:0施用适宜,可提高水稻收获指数和结实率.
3) 在同等施氮量下,一次性施用控释尿素的水稻产量与施用普通尿素差异无统计学意义,但显著提高了氮肥的回收利用效率.