-
酪氨酸酶(tyrosinase,EC 1.14.18.1)是一种广泛分布于自然界的多功能铜离子金属酶,是黑色素生物合成过程中的限速酶.目前已知酪氨酸酶负责催化黑色素生物合成途径中的前两步:催化酪氨酸发生羟化反应生成L-3,4-二羟基苯丙氨酸以及催化氧化L-3,4-二羟基苯丙氨酸生成多巴醌[1].已知酪氨酸酶与一些因皮肤色素沉积而产生的问题如老年斑、雀斑、炎症后黑变病等关系密切[2].因此,酪氨酸酶抑制剂可作为皮肤脱色剂或美白化妆品成分等应用于医药、化妆品等领域.目前已有许多天然或化学合成来源的酪氨酸酶抑制剂如氢醌、曲酸和熊果苷等被报道,但活性均十分有限,其中一些酪氨酸酶抑制剂如氢醌还存在安全性问题[3].因此,寻找和开发高效安全的酪氨酸酶抑制剂具有十分重要的意义.
迄今为止已有Streptomyces castaneoglobisporus(链霉菌),Bacillus megaterium(巨大芽孢杆菌),Agaricus bisporus(双孢蘑菇),Citrobacter intermedius(柠檬酸杆菌)等几十种来源的酪氨酸酶的蛋白晶体结构被报道.对人源酪氨酸酶晶体结构的研究已有初步报道,但受限于分辨率尚无法应用[4].总体而言,酪氨酸酶的结构分为3个部分:中央域,N-端域,C-端域.中央域为保守结构域,含有两个相邻的Cu2+,分别与3个组氨酸残基配位,另有1个内源桥基将这2个Cu2+联系在一起[5].在酪氨酸酶抑制剂的研究中,商业化的双孢蘑菇酪氨酸酶通常作为蛋白模型用于体外筛选和抑制活性评价,但其与人酪氨酸酶蛋白的氨基酸序列一致性仅为12%,且研究表明化合物对双孢蘑菇酪氨酸酶的抑制活性与对人酪氨酸酶的抑制活性存在较大偏差[6-8].因此,构建有效可靠的人酪氨酸酶同源模型将有利于开展基于结构的虚拟筛选,以及对人源酪氨酸酶活性抑制剂的结合模式和构效关系进行研究.
Homology Modeling of Human Tyrosinase
-
摘要: 酪氨酸酶是皮肤黑色素生物合成过程中的限速酶,其抑制剂作为皮肤脱色剂具有重要的商业价值.目前尚无可用的人酪氨酸酶晶体结构,极大地限制了人酪氨酸酶抑制剂的研究.以人酪氨酸酶相关蛋白-1的晶体结构为模板,利用同源模建法对人酪氨酸酶的三维结构进行了模拟,采用分子对接对曲酸与人源模型和蘑菇酪氨酸酶的结合模式进行比较.随后采用分子动力学方法获得了稳定的复合物结构以获得更详细的信息.该研究为接下来的人酪氨酸酶抑制剂的虚拟筛选打下了基础,也为基于曲酸结构开发更高效的人酪氨酸酶抑制剂提供了思路.
-
关键词:
- 人酪氨酸酶 /
- 人酪氨酸酶相关蛋白-1 /
- 同源模建 /
- 分子动力学
Abstract: Tyrosinase is responsible for the rate-limiting step in melanin synthesis in mammalian skin. Potent human tyrosinase inhibitors are of important commercial value as a skin-depigmenting agent. So far, no crystal structure for full length human tyrosinase is available, which hinders the study of human tyrosinase inhibitors. In this study, a homology model of the 3D structure of human tyrosinase was built by means of the homology modeling method. The recently obtained crystal structure of human tyrosinase-related protein-1, which has high identity (40%) to the human enzyme, was used as the template. The molecular docking approach was employed to compare the binding modes of kojic acid with those of human enzyme and mushroom tyrosinase. Then, the molecular dynamics method was used to obtain the stable structure of the complex for more detailed information. It is estimated that this research lays a foundation for further virtual screening for human tyrosinae inhibitors and provides useful information to modify the structure of kojic acid for the development of more potent human tyrosinase inhibitors.-
Key words:
- human tyrosinase /
- human tyrosinase-related protein-1 /
- homology modeling /
- molecular dynamics .
-
[1] 李溯, 丁劲松.黑色素生物合成与酪氨酸酶抑制剂的研究进展[J].中南药学, 2013, 11(4): 278-282. doi: http://d.old.wanfangdata.com.cn/Periodical/znyx201304012 [2] 姚彬, 张莉莉, 任清.皮肤黑色素的形成及美白剂美白机制[J].北京日化, 2007(2): 18-22. doi: http://www.cqvip.com/qk/97404X/200702/24520810.html [3] 陈永红, 邹志飞, 王岚, 等.曲酸对动物的毒性研究及安全性评价[J].食品科学, 2007, 28(9): 536-540. doi: 10.3321/j.issn:1002-6630.2007.09.132 [4] doi: http://cn.bing.com/academic/profile?id=8cece876a31b067cadb7a7cc33862b3f&encoded=0&v=paper_preview&mkt=zh-cn DOLINSKAM B, WINGFIELD P T, SERGEEV Y V. The Purification of Recombinant Human Tyrosinase from Insect Larvae Infected with the Baculovirus Vector [J]. Current Protocols in Protein Science, 2017, 89(1): 1-12. [5] ISMAYA W T, ROZEBOOM H J, WEIJN A, et al. Crystal Structure of Agaricus bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone [J]. Biochemistry, 2011, 50(24): 5477-5486. doi: 10.1021/bi200395t [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87b70763b1fc9c0b6c736beca89f558e HA Y M, PARK Y J, LEE J Y, et al. Design, Synthesis and Biological Evaluation of 2-(substituted Phenyl)thiazolidine-4-carboxylic Acid Derivatives as Novel Tyrosinase Inhibitors [J]. Biochimie, 2012, 94(2): 533-540. [7] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cf1dcff18e953676ea3680a37520b619 VONTZALIDOU A, ZOIDIS G, CHAITA E, et al. Design, Synthesis and Molecular Simulation Studies of Dihydrostilbene Derivatives as Potent Tyrosinase Inhibitors [J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(17): 5523-5526. [8] CHANG T S. An Updated Review ofTyrosinase Inhibitors [J]. International Journal of Molecular Sciences, 2009, 10(6): 2440-2475. doi: 10.3390/ijms10062440 [9] CHOTHIA C, LESK A M. The Relation between the Divergence of Sequence and Structure in Proteins [J]. The EMBO Journal, 1986, 5(4): 823-826. doi: 10.1002/j.1460-2075.1986.tb04288.x [10] LAI X L, WICHERS H J, SOLER-LOPEZ M, et al. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis [J]. Angewandte Chemie International Edition, 2017, 56(33): 9812-9815. doi: 10.1002/anie.201704616 [11] ŠALI A, BLUNDELL T L. Comparative Protein Modelling by Satisfaction of Spatial Restraints [J]. Journal of Molecular Biology, 1993, 234(3): 779-815. doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1006-jmbi.1993.1626/ [12] ZHANG W, HOU T J, QIAO X B, et al. Parameters for the Generalized Born Model Consistent with RESP Atomic Partial Charge Assignment Protocol [J]. The Journal of Physical Chemistry B, 2003, 107(34): 9071-9078. doi: 10.1021/jp034613k [13] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=258e3677a588dcfc15e2de557427284e HORNAK V, ABEL R, OKUR A, et al. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters [J]. Proteins: Structure, Function, and Bioinformatics, 2006, 65(3): 712-725. [14] ROE D R, CHEATHAM T E III. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data [J]. Journal of Chemical Theory and Computation, 2013, 9(7): 3084-3095. doi: 10.1021/ct400341p [15] doi: http://cn.bing.com/academic/profile?id=c0f06a2b8d44614d74e1a0eee0f250eb&encoded=0&v=paper_preview&mkt=zh-cn MILLER B R III, MCGEE T D Jr, SWAILS J M, et al. MMPBSA. py: an Efficient Program for End-State Free Energy Calculations [J]. Journal of Chemical Theory and Computation, 2012, 8(9): 3314-3321. [16] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00228148/ LASKOWSKI R A, MACARTHUR M W, MOSS D S, et al. PROCHECK: a Program to Check the Stereochemical Quality of Protein Structures [J]. Journal of Applied Crystallography, 1993, 26(2): 283-291.