-
开放科学(资源服务)标志码(OSID):
-
在全球气候持续增温和变暖的趋势下,极端降水事件的强度和发生频率也在不断增加,不少学者对此进行了研究.如有分析表明[1-3],在过去的50多年间,北半球中高纬度很多地区的极端降水事件都趋于增多;北美洲和中美洲的极端降水事件多发;欧洲南部及地中海地区的中等强度降水减少,强降水增多;东亚地区极端降水的强度和频率也呈明显上升趋势等.国外学者中,Myhre等[4]利用16个耦合气候模式的降水数据,通过极限指数的计算,发现在全球变暖条件下,极端降水频率随着事件频度的增加而大幅度增加;Norris等[5]根据20世纪末降水的概率分布和21世纪末社区地球系统模型大集合的预测值估算水汽收支,分析动力学和热力学因素在变暖的气候中对极端降水的影响,发现了其复杂的动态趋势变化以及亚热带降水增加的现象.在过去的半个世纪中,中国一直是世界上气候变暖最快的地区之一.气温和降水作为两个主要的气象要素,它们的异常变化总是与干旱、洪水和冷暖平流的频繁发生有关,这些都会对社会环境和自然环境产生重要而直接的影响.Sun等[6]在研究中国变暖环境中冬季降水和极端降水的年际变化中,着重分析我国气温和降水的耦合关系,发现过去50年里我国冬季降水和极端降水在10年时间尺度上表现出与温度一致的增加;有不少学者直接研究了降水对温度的敏感性,如Zhao等[7]比较了不同时期中国南方和华北地区持续降雨的起始和结束时间,发现与相对寒冷的20世纪六七十年代相比,在中国相对较温暖的1980-1990年,南方持续性降水开始时间较早而结束稍晚,北方则相反.这些研究表明降水对气候变暖产生了的影响.
西南地区地貌类型多样、地质构造复杂,是一个典型的气候多变区,在全球气候异常变化的背景下,西南地区的降水特征也具有显著的变化.近年来,国内学者围绕西南涡活动[8]、El Niño事件[9]、西北太平洋副高变化与西南降水[10]等展开了部分研究.西南地区夏季降水丰沛,占全年降水量比重大,降水年际变率大,每年5月至10月是西南地区暴雨多发季节,其中尤以夏季(6月至8月)的暴雨发生频次最多,强度最大,易造成洪涝灾害;特别是近年来夏季旱涝强度和频率都有加剧趋势,对区域防洪减灾造成巨大威胁.针对西南地区的夏季降水,熊光洁等[11]、刘燕等[12]、李永华等[13]利用经验正交分解(EOF)或旋转经验正交分解(REOF),对西南除西藏自治区以外地区长期的时空演变趋势进行了研究,结果表明全区域一致型是最主要的分布型,西南地区东部夏季降水呈增加趋势.基于以上研究,本文利用1976-2017年西南5个省市区116个站点的逐日降水资料,通过对不同等级(小雨、中雨、大雨、暴雨)夏季降水量和降水日数的时空分布特征进行整体和单个省市区较全面的时空分析和突变检验,探讨全球变暖背景下西南地区夏季各级降水量和降水日数的时空分布特征和变化趋势,从而为相应的防灾减灾和生态环境建设提供参考.
Spatial and Temporal Change Characteristics of Different Grades of Precipitation in Summer in Southwestern China from 1976 to 2017
-
摘要: 利用西南地区116个站点1976-2017年的逐日降水资料,运用Mann-Kendall突变检验、滑动T检验、反距离权重插值和经验正交函数分解(EOF)等方法,统计分析了近42年西南地区夏季不同等级降水的时空分布特征.结果表明:西南地区夏季不同等级平均降水量以中雨为主,降水量和降水日数的年际变化具有一致性;受厄尔尼诺和热带风暴的影响,总降水量波动增加,总降水量分别在1998年和2006年发现最大值和最小值,且大雨的降水量在1984年有突变发生.在空间分布上,西南地区不同等级的降水量和降水日数分布一致,受地形因素和大气环流影响,小雨和中雨表现为中间高两边低的特点,而大雨和暴雨则表现为东高西低的特点;EOF结果显示西藏和川西地区的暴雨降水量年际变化主要为缓慢增加型,川东和重庆地区的年际变化则主要为明显增加型,云南东部和贵州大部分地区则为缓慢减少型.Abstract: Based on daily precipitation data of 116 stations in Southwestern China from 1976 to 2017, the spatial and temporal distribution characteristics of different grades of precipitation in summer in Southwestern China were statistically analyzed by using Mann-Kendall mutation test, sliding T test, EOF analysis and inverse distance weighted interpolation method.The results showed that the average precipitation at all levels in summer of Southwestern China was mainly moderate rain, and the interannual variation of precipitation and precipitation days was consistent.The fluctuation of total precipitation increased.Affected by El Niño and tropical storms, the total precipitation had maximum and minimum values in 1998 and 2006, respectively, and heavy rain had abrupt changes in 1984.In terms of spatial distribution, the distributions of precipitation and precipitation days were the same in Southwestern China.Under the influences of topography and atmospheric circulation, light rain and moderate rain were characterized as high in the middle and low in both sides, while heavy rain and rainstorm were high in the east and low in the west of Southwestern China.The results of EOF analysis showed that the interannual variation of rainstorm precipitation in Tibet and Western Sichuan were mainly slow increasing type, in Eastern Sichuan and Chongqing were mainly obvious increasing type, and that in eastern Yunnan and most parts of Guizhou were slow to decrease.
-
表 1 西南地区1976-2017年夏季不同等级降水的平均降水量和降水日数
地区 降水量/mm 降水日数/d 小雨 中雨 大雨 暴雨 总量 小雨 中雨 大雨 暴雨 总量 西藏 111.5 107.7 13.1 0.9 233.1 46.9 7.5 0.7 0.0 55.1 四川 103.3 158.1 118.2 112.5 492.0 39.1 10.4 3.3 1.4 54.2 云南 109.4 197.2 106.2 89.2 502.0 42.1 12.7 5.1 1.3 61.2 贵州 78.0 143.9 155.0 147.2 524.2 31.7 9.2 4.6 2.0 47.6 重庆 61.1 119.6 171.3 171.2 523.2 26.1 7.6 4.4 2.3 40.3 西南 100.5 152.8 101.0 91.0 445.3 39.7 10.0 3.4 1.2 54.4 表 2 西南地区1976-2017年夏季各级降水量的M-K突变检验和滑动T检验结果
M-K检验 滑动T检验 综合结果 小雨 20世纪末至21世纪初UF和UB在临界线之间有多个交点 未超过临界值范围 小雨降水量无突变发生 中雨 1994-1998年UF和UB在临界线之间有交点 检验值只在2002年超过临界值范围,为2.36 中雨降水量无突变发生 大雨 1984-1990年UF和UB在临界线之间有交点 1984年和2002年检验值超过临界值范围,分别为2.36和2.35 大雨降水量在1984年有突变发生 暴雨 UF和UB在20世纪80年代有交点 未超过临界值范围 暴雨降水量无突变发生 表 3 总降水量前10个模态的方差贡献率
序号 1 2 3 4 5 6 7 8 9 10 累积方差贡献率/% 总降水量方差贡献率% 17.31 12.66 9.51 6.66 5.06 4.12 3.69 3.52 3.33 2.83 68.69 -
[1] doi: http://meteo.edu.vn/dhkhtn/stores/files/0907_Tailieu_CuaLo/TLTK/Trends%20in%20Intense%20Precipitation%20in%20the%20Climate%20Record.pdf GROISMAN P Y, KNIGHT R W, EASTERLING D R, et al. Trends in Intense Precipitation in the Climate Record [J]. Journal of Climate, 2010, 18(9): 1326-1350. [2] PRYOR S C, HOWE J A, KUNKEL K E. How Spatially Coherent and Statistically Robust Are Temporal Changes in Extreme Precipitation in the Contiguous USA? [J]. International Journal of Climatology, 2009, 29(1): 31-45. doi: 10.1002/joc.1696 [3] WU H T J, LAU K M. Detecting Climate Signals in Precipitation Extremes from TRMM (1998-2013) - Increasing contrast between wet and dry extremes during the "global warming hiatus" [J]. Geophysical Research Letters, 2016, 43(3): 1340-1348. doi: 10.1002/2015GL067371 [4] MYHRE G, ALTERSKJAER K, STJERN C W, et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness Under Global Warming [J]. Scientific Reports, 2019, 9(1): 345-357. doi: 10.1038/s41598-018-36791-5 [5] JESSE NORRIS, GANG CHEN, J DAVID NEELIN. Thermodynamic Versus Dynamic Controls on Extreme Precipitation in a Warming Climate from the Community Earth System Model Large Ensemble [J]. Journal of Climate, 2019, 32(4): 1025-1045. doi: 10.1175/JCLI-D-18-0302.1 [6] SUN J Q, AO J. Changes in Precipitation and Extreme Precipitation in a Warming Environment in China [J]. Chinese Science Bulletin, 2013, 58(12): 1395-1401. doi: 10.1007/s11434-012-5542-z [7] ZHAO P, YANG S, YU R C. Long-Term Changes in Rainfall over Eastern China and Large-Scale Atmospheric Circulation Associated with Recent Global Warming [J]. Journal of Climate, 2010, 23(6) : 1544-1562. doi: 10.1175/2009JCLI2660.1 [8] 马勋丹, 智协飞, 王静, 等. 1979-2016年夏季西南涡活动及其与降水的关系[J]. 大气科学学报, 2018, 41(2): 198-206. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201802006.htm [9] 陶威. 近50年西南地区降水的时空分布特征[J]. 气候变化研究快报, 2018, 7(4): 308-319. [10] 晏红明, 王灵. 西北太平洋副高东西变动与西南地区降水的关系[J]. 应用气象学报, 2019, 30(3): 360-375. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201903009.htm [11] 熊光洁, 王式功, 尚可政, 等. 中国西南地区近50年夏季降水的气候特征[J]. 兰州大学学报(自然科学版), 2012, 48(4): 45-52. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201204010.htm [12] 刘燕, 王谦谦, 程正泉. 我国西南地区夏季降水异常的区域特征[J]. 南京气象学院学报, 2002, 25(1): 105-110. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200201015.htm [13] 李永华, 徐海明, 白莹莹, 等. 我国西南地区东部夏季降水的时空特征[J]. 高原气象, 2010, 29(2): 523-530. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002029.htm [14] 黄婕, 王跃峰, 高路, 等. 1960-2011年福建省不同等级降水时空变化特征[J]. 中国水土保持科学, 2015, 13(2): 17-23. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201502004.htm [15] 余予, 孟晓艳, 张欣. 1980-2011年北京城区能见度变化趋势及突变分析[J]. 环境科学研究, 2013, 26(2): 129-136. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201302002.htm [16] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999. [17] doi: http://www.researchgate.net/profile/Robert_Cahalan/publication/23598949_Sampling_Errors_in_the_Estimation_of_Empirical_Orthogonal_Functions/links/09e41511e61151ea2b000000.pdf NORTH G R, BELL T L, CAHALAN R F, et al. Sampling Errors in the Estimation of Empirical Orthogonal Functions, Monthly Weather Review, 1982, 110(7), 699-706.