-
开放科学(资源服务)标志码(OSID):
-
近年来,含权Hardy不等式的研究吸引了大量学者的关注[1-2],在齐次群上获得了一些改进后的Hardy不等式[3-4]. 针对于广义Heisenberg-Greiner p-退化椭圆算子,文献[5]利用Picone恒等式得到一类如下Hardy型不等式:若u∈C0∞(
$\mathbb{R}^{2 n+1}$ \{(0,0)}),1<p<Q,则其中:▽Lu,d分别为Heisenberg-Greiner向量场关于u的梯度和拟距离;Q=2n+2k是齐次维数(下文详细介绍). 特别地,当p=2,k=1时,(1)式即为文献[6]中结果. 文献[7]在有界集Ω⊂
$\mathbb{R}^{2 n+1}$ 且0∉Ω上得到了下列Hardy不等式:若1<p<+∞,则对任意u∈D1,p(Ω),有其中ξ=(x,y,t)∈
$\mathbb{R}^{2 n+1}$ . 进一步,如果0∈Ω,则(2)式中常数$\left(\frac{|Q-p|}{p}\right)^{p}$ 最佳. 对于Kohn Laplacian算子,文献[8]建立了带有余项的Hardy不等式:若Ω⊂$\mathbb{H}^{n}$ ,0∈Ω,p≠Q,则对于u∈D01,p(Ω\{0}),R≥R0存在M0>0,使得$\sup\limits_{x \in \mathit{\Omega }} d(x) \mathrm{e}^{\frac{1}{M_{0}}}=R_{0} < \infty$ ,有而且当2≤p<Q时,可以得到
本文使用类似于文献[9]中的方法,利用散度定理,引入一类性质恰当的向量场,结合逼近的思想,推广了(1),(2)和(3)式,得到了广义Heisenberg-Greiner p-退化椭圆算子的两类含权Hardy不等式,进一步给出了最佳常数的证明.
Two Types of Weighted Hardy Inequalities for Generalized p-degenerate Subelliptic Heisenberg-Greiner Operators
-
摘要: 本文研究了广义Heisenberg-Greiner p-退化椭圆算子的Hardy不等式推广问题. 利用散度定理并选择恰当的向量场,得到两类含权Hardy不等式. 结合逼近的方法,给出了最佳常数的证明,进一步推广了已有的结果.
-
关键词:
- 广义Heisenberg-Greiner p-退化椭圆算子 /
- 含权Hardy不等式 /
- 最佳常数
Abstract: In this paper, we present the improved versions of Hardy inequalities for the generalized p-degenerate subelliptic Heisenberg-Greiner operators. By employing divergence theorem and choosing suitable vector fields, we obtained two types of weighted Hardy inequalities. Furthermore, we show the proof of the best constants by combining with the approximation method. Our results extend the existing results. -
[1] RUZHANSKY M, SURAGAN D. Hardy Inequalities on Homogeneous Groups[M]. Cham: Springer International Publishing, 2019. [2] 王胜军, 窦井波. Heisenberg型群上的广义Picone恒等式及其应用[J]. 西南大学学报(自然科学版), 2020, 42(2): 48-54. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.02.008 [3] doi: https://www.researchgate.net/publication/228989516_Sharp_weighted_Rellich_and_uncertainty_principle_inequalities_on_Carnot_groups KOMBE I. Sharp Weighted Rellich and Uncertainty Principle Inequalities on Carnot Groups[J]. Communications in Applied Analysis, 2010, 14(2): 251-272. [4] RUZHANSKY M, SURAGAN D. Hardy and Rellich Inequalities, Identities, and Sharp Remainders on Homogeneous Groups[J]. Advances in Mathematics, 2017, 317: 799-822. doi: 10.1016/j.aim.2017.07.020 [5] doi: https://www.sciencedirect.com/science/article/pii/S0362546X03000622 ZHANG H Q, NIU P C. Hardy-Type Inequalities and Pohozaev-Type Identities for a Class of P-Degenerate Subelliptic Operators and Applications[J]. Nonlinear Analysis: Theory, Methods & Applications, 2003, 54(1): 165-186. [6] GAROFALO N, LANCONELLI E. Frequency Functions on the Heisenberg Group, the Uncertainty Principle and Unique Continuation[J]. Annales De l'Institut Fourier, 1990, 40(2): 313-356. doi: 10.5802/aif.1215 [7] doi: https://www.researchgate.net/publication/2126434_Hardy_Type_Inequalities_Related_to_Degenerate_Elliptic_Differential_Operators D'AMBROSIO L. Hardy-Type Inequalities Related to Degenerate Elliptic Differential Operators[J]. Annali Scuola Normale Superiore-Classe Di Scienze, 2009, 4(5): 451-486. [8] DOU J B, NIU P C, YUAN Z X. A Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem[J]. Journal of Inequalities and Applications, 2007, 2007(1): 032585. doi: 10.1155/2007/32585 [9] XI L, DOU J B. Some Weighted Hardy and Rellich Inequalities on the Heisenberg Group[J]. International Journal of Mathematics, 2021, 32(3): 2150011. doi: 10.1142/S0129167X21500117 [10] GREINER P C. A Fundamental Solution for a Nonelliptic Partial Differential Operator[J]. Canadian Journal of Mathematics, 1979, 31(5): 1107-1120. doi: 10.4153/CJM-1979-101-3 [11] BEALS R, GAVEAU B, GREINER P. On a Geometric Formula for the Fundamental Solution of Subelliptic Laplacians[J]. Mathematische Nachrichten, 1996, 181(1): 81-163. doi: 10.1002/mana.3211810105 [12] NIU P C, OU Y F, HAN J Q. Several Hardy Type Inequalities with Weights Related to Generalized Greiner Operator[J]. Canadian Mathematical Bulletin, 2010, 53(1): 153-162. doi: 10.4153/CMB-2010-029-9 [13] BEALS R, GREINER P, GAVEAU B. Green's Functions for some Highly Degenerate Elliptic Operators[J]. Journal of Functional Analysis, 1999, 165(2): 407-429. doi: 10.1006/jfan.1999.3421 [14] BEALS R, GAVEAU B, GREINER P. Uniforms Hypoelliptic Green's Functions[J]. Journal De Mathématiques Pures et Appliquées, 1998, 77(3): 209-248. doi: 10.1016/S0021-7824(98)80069-X [15] FOLLAND G B. A Fundamental Solution for a Subelliptic Operator[J]. Bulletin of the American Mathematical Society, 1973, 79(2): 373-376. doi: 10.1090/S0002-9904-1973-13171-4 [16] GAROFALO N, SHEN Z W. Absence of Positive Eigenvalues for a Class of Subelliptic Operators[J]. Mathematische Annalen, 1996, 304(1): 701-715. doi: 10.1007/BF01446315
计量
- 文章访问数: 464
- HTML全文浏览数: 464
- PDF下载数: 22
- 施引文献: 0