-
开放科学(资源服务)标志码(OSID):
-
病毒粒子是一种由核酸和蛋白质外壳组成的细胞内寄生病原物,具有生长、遗传和变异等生物特性和侵染活性[1]. 植物病毒寄生引起植物病毒病,被人们称为“植物癌症”. 国际病毒分类委员会(International Committee on Taxonomy of Viruses,ICTV)第10次病毒分类报告(2017年第10版)中,病毒分类系统包括9目、131科、46亚科、802属和4 853种,其中侵染植物的病毒有5目、28科、5亚科、121属、1 440种,与ICTV第9次病毒分类报告相比,病毒种类增加了3目、44科、27亚科、453属、2 569种[2]. 通过宏基因组测序获得丰富的基因组信息,并运用到病毒分类和命名,该技术获得ICTV的认可. 2017版病毒分类系统中病毒数量倍增的根本原因,在于大范围取样和宏基因组测序的应用[3]. 宏基因组测序则是利用HTS技术直接对环境中所有微生物进行测序,真实客观地检测环境中存在的病毒,因此,HTS技术的发展在病毒检测和分类中发挥关键作用. 近年来,蔬菜、粮食、果树等均有被新病毒侵染的报道,2020年,农业农村部公布的《一类农作物病虫害名录》中包括7种病害,其中南方水稻黑条矮缩病的病原体为南方水稻黑条矮缩病毒(southern rice black-streaked dwarf virus,SRBSDV)[4],病害严重影响着作物的产量和品质. 农药和化肥的过度使用、全球变暖以及环境的恶化,加剧了植物病毒的传播和发展,而治理植物病毒病的前提是建立有效的植物病毒检测方法.
传统的植物病毒检测方法有:生物学检测法、电子显微镜观察法、血清学检测法和分子生物学方法[5]. 生物学检测法借助对病毒敏感的植物来检测病毒,检测速度慢,目前应用较少;电镜观察法根据病毒形态、大小和染病组织超微结构等检测病毒,在研究病毒对寄主和环境的影响[6]、观察病毒形态等方面十分重要,缺点是检测设备昂贵;血清学检测法在植物和昆虫病毒检测中被广泛应用,可同时检测大量样品,缺点是实验技术要求高,如酶联免疫吸附试验(enzyme-linked immunesorbent assay,ELISA);分子生物学方法采用核酸杂交来检测病毒,如核酸杂交技术、反转录PCR(reverse transcription-polymerase chain reaction,RT-PCR)、荧光定量PCR及DNA微阵列技术等,灵敏度高,成本也高.
HTS技术可以快速获得植物病毒基因组序列,结合生物信息学分析,用于已知病毒、新病毒和仅有裸露RNA分子的类病毒鉴定. 新病毒可以是全新的病毒种类,也可以是已知病毒种类在新寄主、新介体和新地理范围的新兴病毒. 自2009年Rwahnih等[7]提取葡萄总RNA作为测序模板发现了7个已知病毒和1个新病毒——西拉葡萄病毒1号(grapevine Syrah virus-1,GSyV-1)以来,高通量测序被广泛应用于植物病毒检测,截至2016年已发现100多种新的病毒和类病毒[8],现已成为植物病毒检测的主要手段. 本文总结了高通量测序技术的发展及其在植物病毒检测中的应用案例,旨在为植物病毒病防治提供依据.
High-Throughput Sequencing Technology and Its Application in Plant Virus Detection
-
摘要: 植物病毒寄生可引起植物病毒病,甚至对植物造成毁灭性伤害. 高通量测序技术(high-throughput sequencing,HTS)提供了一种快速、低成本、深度测序的解决方案,在病毒鉴定、新病毒检测和病毒基因组多样性等研究中具有优势,促进了植物病毒分类的研究. 本文概述了HTS技术检测病毒的进展、在植物病毒学领域应用案例和该方法检测病毒的优缺点,旨在说明HTS技术对病毒鉴定、新病毒发现和病毒分类的重要贡献,提出新病毒检测和鉴定是亟待解决的问题,为植物病毒病的预防提供参考.Abstract: Plant virus parasitism causes plant virus diseases, some of which can cause devastating damage to plants. High-throughput sequencing (HTS) technology provides a fast, low-cost, deep sequencing solution, which has advantages in virus identification, new virus detection and virus genome diversity research. So far, the HTS technology had begun to be applied in the field of plant virology, including the detection of known viruses, new viruses, and the study of viral genome diversity. In this paper, the development of HTS technology, virus detection methods, application cases in the field of plant virology, and the advantages and disadvantages of HTS technology utilization in virus detection are summarized. It aims to illustrate the contributions of HTS technology in the fields of virus identification, new virus discovery, and virus classification. It is proposed that the detection and identification of new viruses is an urgent unsolved problem, the investigation lays a foundation for the prevention of plant virus diseases.
-
Key words:
- high-throughput sequencing /
- plant virus classification /
- new virus identification .
-
表 1 第二代和第三代测序技术对比[32]
列项 Illumina Ion Torrent PacBio Nanopore 主要测序平台 MiniSeq,MiSeq,NextSeq,NovaSeq,HiSeq Ion S5,Ion Proton,Ion PGM Sequel,RSII MinION,GridION,PromethION Reads长度 HiSeq:100~150 bp MiSeq:400~500 bp Ion S5:200~600 bp Ion Proton:200 bp Ion PGM:200~500 bp 平均2 000~5 000 bp 高达900 kbp 测序时间 1~6 d 2~4 h 0.5~4 h 1 min~72 h 输出量 500~1 000 GB 高达10 GB 0.1~1 GB 15 GB~8.6 TB 测序错误率 低 较Illumina测序要高 较Illumina测序要高 较Illumina测序要高 测序成本 低 低 偏高 偏高 优点 高通量,测序低成本 5~10 ng DNA可进行测序 长读长,一致性序列准确,均匀覆盖 超长读长,可直接测序,低能耗 缺点 依赖PCR,短读长 遇到同聚物区域时,可能会出现测序错误 与第二代测序相比,通量低、错误率高、成本高 利用电流变化来确定核苷酸序列的错误率高 -
[1] 王端, 叶健. 植物病毒资源属性和应用基础研究进展[J]. 生物资源, 2020, 42(1): 1-8. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-AJSH202001001.htm [2] 原雪峰, 于成明. 国际病毒分类委员会(ICTV)2017分类系统与第九次分类报告的比较及数据分析[J]. 植物病理学报, 2019, 49(2): 145-150. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201902001.htm [3] SIMMONDS P, ADAMS M J, BENKÖ M, et al. Consensus Statement: Virus Taxonomy in the Age of Metagenomics[J]. Nature Reviews Microbiology, 2017, 15(3): 161-168. doi: 10.1038/nrmicro.2016.177 [4] 中华人民共和国农业农村部. 一类农作物病虫害名录: 07B100271202000559[S/OL]. [2020-09-15]. http://www.moa.gov.cn/nybgb/2020/202010/202011/t20201130_6357326.htm. [5] 薛超. 植物病毒检测技术研究进展分析[J]. 农业与技术, 2020, 40(16): 48-50. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYYS202016018.htm [6] RICHERT-PÖGGELER K R, FRANZKE K, HIPP K, et al. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses[J]. Frontiers in Microbiology, 2019, 9: 3255. doi: 10.3389/fmicb.2018.03255 [7] RWAHNIH M A, DAUBERT S, GOLINO D, et al. Deep Sequencing Analysis of RNAs from a Grapevine Showing Syrah Decline Symptoms Reveals a Multiple Virus Infection that Includes a Novel Virus[J]. Virology, 2009, 387(2): 395-401. doi: 10.1016/j.virol.2009.02.028 [8] doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999435/ HADIDI A, FLORES R, CANDRESSE T, et al. Next-Generation Sequencing and Genome Editing in Plant Virology[J]. Frontiers in Microbiology, 2016, 7: 1325. [9] SHENDURE J, BALASUBRAMANIAN S, CHURCH G M, et al. DNA Sequencing at 40: Past, Present and Future[J]. Nature, 2017, 550(7676): 345-353. doi: 10.1038/nature24286 [10] CONSORTIUM I H G S. Finishing the Euchromatic Sequence of the Human Genome[J]. Nature, 2004, 431(7011): 931-945. doi: 10.1038/nature03001 [11] doi: https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpmb.59 SLATKO B E, GARDNER A F, AUSUBEL F M. Overview of Next-Generation Sequencing Technologies[J]. Current Protocols in Molecular Biology, 2018, 122(1): e59. [12] GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of Age: Ten Years of Next-Generation Sequencing Technologies[J]. Nature Reviews Genetics, 2016, 17(6): 333-351. doi: 10.1038/nrg.2016.49 [13] WANG Y, ZHU P, ZHOU Q, et al. Detection of Disease in Cucurbita maxima Duch. Ex Lam. Caused by a Mixed Infection of Zucchini Yellow Mosaic Virus, Watermelon Mosaic Virus, and Cucumber Mosaic Virus in Southeast China Using a Novel Small RNA Sequencing Method[J]. PeerJ, 2019, 7: e7930. doi: 10.7717/peerj.7930 [14] 张子敬, 刘燕蓉, 张顺进, 等. 第三代测序技术的方法原理及其在生物领域的应用[J]. 中国畜牧杂志, 2020, 56(6): 11-15. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXM202006003.htm [15] WENGER A M, PELUSO P, ROWELL W J, et al. Accurate Circular Consensus Long-Read Sequencing Improves Variant Detection and Assembly of a Human Genome[J]. Nature Biotechnology, 2019, 37(10): 1155-1162. doi: 10.1038/s41587-019-0217-9 [16] JAIN M, KOREN S, MIGA K H, et al. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads[J]. Nature Biotechnology, 2018, 36(4): 338-345. doi: 10.1038/nbt.4060 [17] SMITH A M, JAIN M, MULRONEY L, et al. Reading Canonical and Modified Nucleobases in 16S Ribosomal RNA Using Nanopore Native RNA Sequencing[J]. PLoS One, 2019, 14(5): e0216709. doi: 10.1371/journal.pone.0216709 [18] HU Z L, HUO M Z, YING Y L, et al. Biological Nanopore Approach for Single-Molecule Protein Sequencing[J]. Angewandte Chemie, 2021, 133(27): 14862-14873. doi: 10.1002/ange.202013462 [19] BRONZATO BADIAL A, SHERMAN D, STONE A, et al. Nanopore Sequencing as a Surveillance Tool for Plant Pathogens in Plant and Insect Tissues[J]. Plant Disease, 2018, 102(8): 1648-1652. doi: 10.1094/PDIS-04-17-0488-RE [20] 隋雪莲. 美国三种新兴蔬菜病毒病特性研究及其检测方法的建立[D]. 福州: 福建农林大学, 2017. [21] WANG Q, XU F Z, AN L L, et al. Molecular Characterization of a New Recombinant Brassica Yellows Virus Infecting Tobacco in China[J]. Virus Genes, 2019, 55(2): 253-256. doi: 10.1007/s11262-019-01636-4 [22] 洪健, 谢礼, 张仲凯, 等. ICTV最新十五级分类阶元病毒分类系统中的植物病毒[J]. 植物病理学报, 2021, 51(2): 143-162. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL202102001.htm [23] ADAMS M J, ANTONIW J F, FAUQUET C M. Molecular Criteria for Genus and Species Discrimination within the Family Potyviridae[J]. Archives of Virology, 2005, 150(3): 459-479. doi: 10.1007/s00705-004-0440-6 [24] BROWN J K, ZERBINI F M, NAVAS-CASTILLO J, et al. Revision of Begomovirus Taxonomy Based on Pairwise Sequence Comparisons[J]. Archives of Virology, 2015, 160(6): 1593-1619. doi: 10.1007/s00705-015-2398-y [25] 周俊. 桃及其野生近缘种中病毒组研究[D]. 北京: 中国农业科学院, 2020. [26] KING A M Q, ADAMS M J, CARSTENS E B, et al. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses[M]. London: Elsevier Academic Press, 2012. [27] MINICKA J, ZARZYŃSKA-NOWAK A, BUDZYŃSKA D, et al. High-Throughput Sequencing Facilitates Discovery of New Plant Viruses in Poland[J]. Plants (Basel, Switzerland), 2020, 9(7): 820. [28] 马宇欣, 李世访. 高通量测序技术在鉴定木本植物双生病毒中的应用[J]. 植物保护, 2016, 42(6): 1-10, 50. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201606001.htm [29] 战斌慧, 周雪平. 高通量测序技术在植物及昆虫病毒检测中的应用[J]. 植物保护, 2018, 44(5): 120-126, 167. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201805021.htm [30] GAAFAR Y Z A, RICHERT-PÖGGELER K R, MAAẞ C, et al. Characterisation of a Novel Nucleorhabdovirus Infecting Alfalfa (Medicago sativa)[J]. Virology Journal, 2019, 16(1): 55. doi: 10.1186/s12985-019-1147-3 [31] PODNAR J, DEIDERICK H, HUERTA G, et al. Next-Generation Sequencing RNA-Seq Library Construction[J]. Current Protocols in Molecular Biology, 2014, 106: 4-21. [32] LO Y T, SHAW P C. Application of Next-Generation Sequencing for the Identification of Herbal Products[J]. Biotechnology Advances, 2019, 37(8): 107450. doi: 10.1016/j.biotechadv.2019.107450 [33] 陈科. 二代测序平台进行核酸检测的新技术研究[D]. 上海: 东华大学, 2018. [34] 王文静. 高通量测序技术在中草药研究中的应用[D]. 长沙: 湖南大学, 2019. [35] 韩九强, 吴思佳, 刘瑞玲, 等. 第二代基因测序仪的硬件设计[J]. 生命科学仪器, 2017, 15(1): 43-45, 42. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SBKY201701010.htm [36] doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494749/ IBABA J D, GUBBA A. High-Throughput Sequencing Application in the Diagnosis and Discovery of Plant-Infecting Viruses in Africa, a Decade Later[J]. Plants (Basel, Switzerland), 2020, 9(10): 1376. [37] BEJERMAN N, ROUMAGNAC P, NEMCHINOV L G. High-Throughput Sequencing for Deciphering the Virome of Alfalfa (Medicago sativa L. )[J]. Frontiers in Microbiology, 2020, 11: 553109. doi: 10.3389/fmicb.2020.553109 [38] SELVA PANDIYAN A, SIVA GANESA KARTHIKEYAN R, RAMESHKUMAR G, et al. Identification of Bacterial and Fungal Pathogens by rDNA Gene Barcoding in Vitreous Fluids of Endophthalmitis Patients[J]. Seminars in Ophthalmology, 2020, 35(7/8): 358-364. [39] GAAFAR Y Z A, RICHERT-PÖGGELER K R, SIEG-MVLLER A, et al. Caraway Yellows Virus, a Novel Nepovirus from Carum Carvi[J]. Virology Journal, 2019, 16(1): 70. doi: 10.1186/s12985-019-1181-1 [40] 刘雪建. 浙江省和江西省蔬菜病毒鉴定与变异研究[D]. 杭州: 浙江大学, 2015. [41] VILLAMOR D E V, HO T, AL RWAHNIH M, et al. High Throughput Sequencing for Plant Virus Detection and Discovery[J]. Phytopathology, 2019, 109(5): 716-725. doi: 10.1094/PHYTO-07-18-0257-RVW [42] 张治军, 陈奇章, 李雪生, 等. 昆虫内共生菌沃尔巴克氏体抗病毒研究进展[J]. 环境昆虫学报, 2021, 43(3): 576-583. doi: 10.3969/j.issn.1674-0858.2021.03.6 [43] 裴凡. 侵染广东辣椒的病毒种类鉴定及病毒病药剂防控效果评价[D]. 广州: 华南农业大学, 2016. [44] 董莉, 欧勇, 孟庆林. 番茄斑萎病毒病的发生与防治[J]. 园艺与种苗, 2020, 40(7): 12-13. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GNZL202007006.htm [45] 范国权, 高艳玲, 张威, 等. 马铃薯主要病毒侵染不同品种症状及对产量的影响[J]. 中国马铃薯, 2019, 33(1): 34-42. doi: 10.3969/j.issn.1672-3635.2019.01.006 [46] WEI Z Y, MAO C Y, JIANG C, et al. Identification of a New Genetic Clade of Cowpea Mild Mottle Virus and Characterization of Its Interaction with Soybean Mosaic Virus in Co-Infected Soybean[J]. Frontiers in Microbiology, 2021, 12: 650773. doi: 10.3389/fmicb.2021.650773 [47] TANG L G, SONG L P, LIN C F, et al. Complete Nucleotide Sequence of a Novel Partitivirus from Brassica campestris L. SSP. Chinensis[J]. Archives of Virology, 2021, 166(6): 1775-1778. doi: 10.1007/s00705-021-05041-x [48] doi: https://pubmed.ncbi.nlm.nih.gov/33934638/ BERIS D, MALANDRAKI I, KEKTSIDOU O, et al. First Report of Eggplant Mottled Crinkle Virus Infecting Eggplant in Greece[J]. Plant Disease, 2021, 2: 3-21. [49] PECMAN A, KUTNJAK D, MEHLE N, et al. High-Throughput Sequencing Facilitates Characterization of a "Forgotten" Plant Virus: The Case of a Henbane Mosaic Virus Infecting Tomato[J]. Frontiers in Microbiology, 2018, 9: 2739. doi: 10.3389/fmicb.2018.02739 [50] 王芳, 高正良, 周本国, 等. 利用小RNA高通量测序技术检测玉米病毒[J]. 植物病理学报, 2017, 47(3): 422-427. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201703017.htm [51] KREUZE J F, PEREZ A, UNTIVEROS M, et al. Complete Viral Genome Sequence and Discovery of Novel Viruses by Deep Sequencing of Small RNAs: a Generic Method for Diagnosis, Discovery and Sequencing of Viruses[J]. Virology, 2009, 388(1): 1-7. doi: 10.1016/j.virol.2009.03.024 [52] XU D L, ZHOU G H. Characteristics of siRNAs Derived from Southern Rice Black-Streaked Dwarf Virus in Infected Rice and Their Potential Role in Host Gene Regulation[J]. Virology Journal, 2017, 14(1): 27. doi: 10.1186/s12985-017-0699-3 [53] 张超, 战斌慧, 周雪平. 我国玉米病毒病分布及危害[J]. 植物保护, 2017, 43(1): 1-8. doi: 10.3969/j.issn.0529-1542.2017.01.001 [54] 陈莎. 深度测序鉴定玉米病毒及感病玉米组织中小RNA分析[D]. 杭州: 浙江大学, 2015. [55] doi: https://apsjournals.apsnet.org/doi/10.1094/PDIS-07-20-1609-PDN JARUGULA S, CHINGANDU N, ADIPUTRA J, et al. First Report of Grapevine Red Globe Virus in Grapevines in Washington State[J]. Plant Disease, 2021, 105(3): 7-17. . [56] JO Y, CHOI H, KIM S M, et al. Integrated Analyses Using RNA-Seq Data Reveal Viral Genomes, Single Nucleotide Variations, the Phylogenetic Relationship, and Recombination for Apple Stem Grooving Virus[J]. BMC Genomics, 2016, 17: 579. doi: 10.1186/s12864-016-2994-6 [57] MATSUMURA E E, COLETTA-FILHO H D, NOURI S, et al. Deep Sequencing Analysis of RNAs from Citrus Plants Grown in a Citrus Sudden Death-Affected Area Reveals Diverse Known and Putative Novel Viruses[J]. Viruses, 2017, 9(4): 92. doi: 10.3390/v9040092 [58] doi: https://apsjournals.apsnet.org/doi/10.1094/PDIS-04-19-0756-PDN LIM S, MOON J S, CHO I S, et al. First Report of Apple Hammerhead Viroid Infecting Apple Trees in South Korea[J]. Plant Disease, 2019, 103(10): 2700. [59] 杨洁萍, 周丽, 马丽, 等. 基于高通量测序的技术检测梨树病毒[J]. 新疆农业科学, 2020, 57(8): 1503-1513. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XJNX202008015.htm [60] READ D A, PIETERSEN G. Diversity of Citrus Tristeza Virus Populations in Commercial Grapefruit Orchards in Southern Africa, Determined Using Illumina MiSeq Technology[J]. European Journal of Plant Pathology, 2017, 148(2): 379-391. doi: 10.1007/s10658-016-1096-2 [61] MALIOGKA V I, MINAFRA A, SALDARELLI P, et al. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies[J]. Viruses, 2018, 10(8): 436. doi: 10.3390/v10080436 [62] WU Q F, WANG Y, CAO M J, et al. Homology-Independent Discovery of Replicating Pathogenic Circular RNAs by Deep Sequencing and a New Computational Algorithm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3938-3943. doi: 10.1073/pnas.1117815109 [63] ROOSSINCK M J. Deep Sequencing for Discovery and Evolutionary Analysis of Plant Viruses[J]. Virus Research, 2017, 239: 82-86. doi: 10.1016/j.virusres.2016.11.019 [64] DARKO J, SVETLANA A P. First Report of Persimmon Cryptic Virus in Persimmon in North Macedonia[J]. Journal of Plant Pathology, 2019, 101(4): 1285. doi: 10.1007/s42161-019-00351-1
计量
- 文章访问数: 1364
- HTML全文浏览数: 1364
- PDF下载数: 239
- 施引文献: 0