-
开放科学(资源服务)标志码(OSID):
-
纹枯病(Rhizoctonia solani Kühn)作为一种水稻的常见真菌性病害,严重威胁着粮食安全. 目前的研究发现,水稻对纹枯病的抗性仅表现为中等水平,且易受环境的影响,迄今尚无稳定高抗的抗源. 水稻纹枯病菌在入侵水稻时,主要是通过气孔或者伤口直接攻击水稻的表皮细胞,进而进入水稻植株体内. 其菌丝在穿过气孔后,可形成侵染垫(卷曲菌丝聚集体),侵染垫能产生降解植物细胞壁的酶,为真菌进入植物组织打开通道[1]. 在进入水稻体内后,纹枯病菌能够产生病原体效应物,这是一类RS(Rhizoctonia solani)毒素,能够破坏水稻组织,加速对水稻植株的入侵和传播[2]. 收获后的菌核遗落在田间,越冬后,在第2年继续形成传染源,这也是纹枯病防治难度大的原因. 在水稻中,目前还没有克隆出有关水稻纹枯病抗性相关的基因. 在Sato等[3]的研究中,利用WSS2(抗病品种)与Hinohikari(感病品种)先自交后回交,鉴定到qSB-3和qSB-12两个主效数量性状基因座(Quantitative trait locus,QTL). 另外两个纹枯病抗性qSB11和qSB9,均来自供体Lemont(抗病品种). 向珣朝等[4]的研究中发现了Rsb-2(t),一个来自于3号染色体的纹枯病抗性主效QTL.
细胞色素P450(cytochrome P450)是一个十分古老的基因家族,在动物、植物、真菌和细菌的细胞内广泛存在,在生物体内的细胞色素P450是一类能够与细胞器膜(内质网、线粒体、高尔基体、质体等)结合的且具有混合功能的血红素氧化酶系,是近年来研究的热点之一. 在水稻的防御机制中,CYP450有着不可替代的作用. CYP71Z2在水稻的防御机制中起作用,该基因能够通过IAA途径介导对白叶枯病的抗性[5]. HAN1在调控植物的逆境应答(冷胁迫和低温胁迫)机制中起作用,在JA途径中催化活性茉莉酸-L-异亮氨酸的转化,负调控水稻的耐寒性[6]. CYP94C2b和HAN1一样,也通过催化活性茉莉酸-L-异亮氨酸的转化,进而降低水稻对外源JA的响应和损伤的应答[7]. OsSL编码的CYP71P1蛋白具有色胺5羟化酶活性,在色胺转变成血清素的过程中起催化作用,血清素能够诱导防御基因的表达在水稻防御机制中发挥作用[8]. 此外,外源5-羟色胺诱导水稻防御基因的表达和细胞的程序化死亡,并增加水稻对稻瘟病的抗性. CYP76M7在抗真菌素中起作用,在水稻第2个二萜类生物合成基因簇中起决定作用. 这个基因簇是多功能的,包括合成两类不同植保素(抗真菌素和抗细菌素)的酶,并且通过不同的转录调控相应的基因[9]. CYP81A6具有对苯达松和磺脲类除草剂的抗性[10]. 在CYP72A31的作用下,双草醚和苄嘧磺隆能够被代谢为一种毒性更小的复合物,进而提高拟南芥和水稻对抑制剂类除草剂(乙酰乳酸合成酶)的耐受性[11].
在前期研究中,通过EMS化学诱变处理籼稻保持系西农1B获得了4个遗传稳定的水稻矮化易感纹枯病的突变体,dssb1,dssb1-1,dssb1-2和dssb1-3. 本研究通过构建F2群体进行连锁分析,采用图位克隆的方法精细定位目标基因,并通过形态学分析、组织化学切片、目标基因的功能分析等手段对该突变体进行表型鉴定及目的基因的功能分析,更深入地了解该基因的分子调控机制,以期为水稻抗病育种提供参考.
Resistance Analysis of OsCYP96B4 Allele Mutants
-
摘要: 优良抗病性是水稻绿色生产的重要需求,在当前水稻育种中有着举足轻重的地位. 矮秆水稻具有耐倒伏、适合密植等优良特性,但其存在较高秆水稻生物产量低、密植易发生严重病害等问题,多年来困扰着水稻育种的研究,因此挖掘矮秆抗病资源成了育种家们一直研究的热点. 从EMS诱变处理的西农1B突变体库中鉴定到4个水稻矮化易感纹枯病突变体(Dwarf and susceptibility to sheath blight 1 mutants,dssb1s),遗传分析发现:这4个突变体均是在LOC_Os03g04680编码框中的不同位置发生突变,LOC_Os03g04680编码一个细胞色素酶OsCYP96B4,接种水稻白叶枯病菌和纹枯病菌后发现这4个突变体均感病,qRT-PCR发现突变体中病程相关基因(NPR1,PR10,PR1a和WRKY45)表达量降低. 组织切片和扫描电镜分析发现:突变体的叶片发育异常,叶表面硅化细胞的数量明显增多,分布密集、杂乱. 对叶片和叶鞘的细胞壁成分测定发现:突变体中的木质素和纤维素质量分数均显著或极显著低于野生型. 实验结果表明:OsCYP96B4是通过调控植物的叶片等发育和细胞壁的组分,进而增强了对水稻病害的耐受性.Abstract: Excellent disease resistance is an important requirement for rice green production and it plays an important role in rice breeding. Dwarf rice has good characteristics such as strong lodging resistance and suitable for dense planting. However, there are many problems with dwarf rice, such as low productivity and the occurrence of serious diseases in dense planting. Therefore, it has been a hot topic for breeders to explore the resources of disease resistance in dwarf rice. In this study, we identified four dwarf and susceptibility to sheath blight mutants (dssb1s) in rice from the library of Xinong 1B mutants treated by EMS. Genetic analysis showed that all the four mutants were mutated at different positions of LOC_Os03g04680 coding frame. These four mutants may be the new allelic mutants of OsCYP96B4. All the four mutants were found to be susceptible to bacterial blight and sheath blight after inoculation. qRT-PCR showed that the expression of disease related genes (NPR1, PR10, PR1a and WRKY45) were decreased in the mutants. Tissue section and scanning electron microscopy analysis showed that the leaves of the mutants were abnormal. The number of silicified cells on the leaf surface was significantly increased, and the silicified cells densely and disorderly distributed. The lignin and cellulose contents of the leaf in the mutant plants were significantly lower than those in the wild type. We found that OsCYP96B4 enhanced the disease resistance of rice by affecting development of leaf and cell wall components.
-
Key words:
- rice /
- dwarf /
- disease resistance /
- CYP450 /
- allelic mutant .
-
[1] MOLLA K A, KARMAKAR S, CHANDA P K, et al. Rice Oxalate Oxidase Gene Driven by Green Tissue-Specific Promoter Increases Tolerance to Sheath Blight Pathogen (Rhizoctonia solani) in Transgenic Rice[J]. Molecular Plant Pathology, 2013, 14(9): 910-922. doi: 10.1111/mpp.12055 [2] ZHENG A, LIN R, ZHANG D, et al. The Evolution and Pathogenic Mechanisms of the Rice Sheath Blight Pathogen[J]. Nature Communications, 2013(4): 1424. [3] SATO Y, SENTOKU N, MIURA Y, et al. Loss-of-Function Mutations in the Rice Homeobox Gene OSH15 Affect the Architecture of Internodes Resulting in Dwarf Plants[J]. The EMBO Journal, 1999, 18(4): 992-1002. doi: 10.1093/emboj/18.4.992 [4] 向珣朝, 李季航, 张楷正, 等. 一个水稻抗纹枯病突变体的遗传分析及其基因的初步定位[J]. 西南科技大学学报, 2007, 22(2): 76-81. doi: 10.3969/j.issn.1671-8755.2007.02.018 [5] LI W, WANG F, WANG J, et al. Overexpressing CYP71Z2 Enhances Resistance to Bacterial Blight by Suppressing Auxin Biosynthesis in Rice[J]. PLoS One, 2015, 10(3): e0119867. doi: 10.1371/journal.pone.0119867 [6] MAO D H, XIN Y Y, TAN Y J, et al. Natural Variation in The HAN1 Gene Confers Chilling Tolerance in Rice and Allowed Adaptation to a Temperate Climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(9): 3494-3501. doi: 10.1073/pnas.1819769116 [7] KUROTANI K, HAYASHI K, HATANAKA S, et al. Elevated Levels of CYP94 Family Gene Expression Alleviate the Jasmonate Response and Enhance Salt Tolerance in Rice[J]. Plant & Cell Physiology, 2015, 56(4): 779-789. [8] FUJIWARA T, MAISONNEUVE S, ISSHIKI M, et al. Sekiguchi Lesion Gene Encodes a Cytochrome P450 Monooxygenase That Catalyzes Conversion of Tryptamine to Serotonin in Rice[J]. Journal of Biological Chemistry, 2010, 285(15): 11308-11313. doi: 10.1074/jbc.M109.091371 [9] SWAMINATHAN S, MORRONE D, WANG Q, et al. CYP76M7 Is an ent-Cassadiene C11α-Hydroxylase Defining a Second Multifunctional Diterpenoid Biosynthetic Gene Cluster in Rice[J]. Plant Cell, 2009, 21(10): 3315-3325. doi: 10.1105/tpc.108.063677 [10] PAN G, ZHANG X Y, LIU K D, et al. Map-Based Cloning of a Novel Rice Cytochrome P450 Gene CYP81A6 that Confers Resistance to Two Different Classes of Herbicides[J]. Plant Molecular Biology, 2006, 61(6): 933-943. doi: 10.1007/s11103-006-0058-z [11] SAIKA H, HORITA J, TAGUCHI-SHIOBARA F, et al. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis[J]. Plant Physiology, 2014, 166(3): 1232-1240. doi: 10.1104/pp.113.231266 [12] 潘学彪, 邹军煌, 陆驹飞, 等. 水稻抗纹枯病主效QTLs的分子标记研究[J]. 扬州大学学报(自然科学版), 1998, 1(1): 18. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ199801005.htm [13] ZHANG J, LIU X, LI S, et al. The Rice Semi-Dwarf Mutant sd37, Caused by a Mutation in CYP96B4, Plays an Important Role in the Fine-Tuning of Plant Growth[J]. PLoS One, 2014, 9(2): e88068. doi: 10.1371/journal.pone.0088068 [14] WANG L, XU Y, ZHANG C, et al. OsLIC, a Novel CCCH-Type Zinc Finger Protein with Transcription Activation, Mediates Rice Architecture via Brassinosteroids Signaling[J]. PLoS One, 2008, 3(10): e3521. doi: 10.1371/journal.pone.0003521 [15] RAMAMOORTHY R, JIANG S Y, RAMACHANDRAN S. Oryza sativa Cytochrome P450 Family Member OsCYP96B4 Reduces Plant Height in a Transcript Dosage Dependent Manner[J]. PLoS One, 2011, 6(11): e28069. doi: 10.1371/journal.pone.0028069 [16] SATO H, IDETA O, ANDO I, et al. Mapping QTLs for Sheath Blight Resistance in the Rice Line WSS2[J]. Breeding Science, 2004, 54(3): 265-271. doi: 10.1270/jsbbs.54.265 [17] ZHANG C, XU Y, GUO S, et al. Dynamics of Brassinosteroid Response Modulated by Negative Regulator LIC in Rice[J]. PLoS Genet, 2012, 8(4): 651-664. [18] LI Q, YAN W, CHEN H, et al. Duplication of OsHAP Family Genes and Their Association with Heading Date in Rice[J]. Journal of Experimental Botany, 2016, 67(6): 1759-1768. doi: 10.1093/jxb/erv566 [19] DE VLEESSCHAUWER D, SEIFI H S, FILIPE O, et al. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice[J]. Plant Physiology, 2016, 170(3): 1831-1847. doi: 10.1104/pp.15.01515 [20] MARGIS-PINHEIRO M, ZHOU X R, ZHU Q H, et al. Isolation and Characterization of a Ds-tagged rice (Oryza sativa L. ) GA-responsive Dwarf Mutant Defective in an Early Step of the Gibberellin Biosynthesis Pathway[J]. Plant Cell Reports, 2005, 23(12): 819-833. doi: 10.1007/s00299-004-0896-6 [21] WANG J, ZHOU L, SHI H, et al. A Single Transcription Factor Promotes both Yield and Immunity in Rice[J]. Science, 2018, 361(6406): 1026-1028. doi: 10.1126/science.aat7675 [22] ZENG Y X, JI Z J, YANG C D. The Way to a more Precise Sheath Blight Resistance QTL in Rice[J]. Euphytica, 2015, 203(1): 33-45. [23] doi: http://www.onacademic.com/detail/journal_1000035900439010_124d.html EIZENGA G C, PRASAD B, JACKSON A K, et al. Identification of Rice Sheath Blight and Blast Quantitative Trait Loci in Two Different O. sativa/O. nivara Advanced Backcross Populations[J]. Molecular Breeding, 2013, 31(4): 889-907. [24] TALBOT N J. Living the Sweet Life: How does a Plant Pathogenic Fungus Acquire Sugar from Plants?[J]. The Journal of Experimental Medicine, 2010, 8(2): e1000308. [25] WANG X L, CHENG Z J, ZHAO Z C, et al. Brittle Sheath1 Encoding OsCYP96B4 is Involved in Secondary Cell Wall Formation in Rice[J]. Plant Cell Reports, 2016, 35(4): 745-755.