多属性融合评级的Mashup服务推荐算法
On Mashup Service Recommendation Based on Multi Attributes Fusion Rating Algorithm
-
摘要: 传统的M ashup服务推荐是基于关键字的检索方法,对于所推荐 A PI服务的社会和功能属性利用较少,不利于全面评价所推荐A PI的适用度,对此提出一种多属性融合评级的M ashup服务推荐算法。首先,利用网爬工具收集ProgrammableWeb上的Mashup服务信息,并采用后缀剥离算法把Mashup服务的标签信息修改为名词形式,以此作为研究分析的数据集。其次,融入A PI服务的社会和功能等多属性对A PI模型进行扩充,并采用多属性相似度加权融合的方式对候选A PI的适用度进行评价,以此作为A PI服务推荐的依据。实验结果表明,多属性融合评级M ashup服务推荐算法具有更高的正确率和更快的运算时间,是可行有效的。Abstract: The traditional Mashup service recommendation is a retrieval method based on keywords ,the use of social and functional properties for the recommended API service is too less to make a comprehensive e-valuation of the recommended API applicability ,so the Mashup service recommendation based on multi at-tributes fusion rating algorithm has been proposed to solve this problem .Firstly ,the climbing tools have been used to collect ProgrammableWeb Mashup service information ,and the suffix stripping algorithm been used to modify the Mashup service label with noun form as the research and analysis data sets .Sec-ondly ,the API model has been extended with the social and the functions attributes ,then the multiple at-tribute similarity weighted fusion has been used to evaluate candidate API fitness ,which would be the API service recommendation basis .The experimental results show that ,the multiple attribute fusion rating Mashup service recommendation algorithm has higher accuracy and faster computing time ,which is feasi-ble and effective .
-
Key words:
- multiple attribute,M ashup,tag,fusion /
-
-
计量
- 文章访问数: 555
- HTML全文浏览数: 357
- PDF下载数: 66
- 施引文献: 0