留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

SiC/BiVO4复合材料光催化降解亚甲基蓝

上一篇

下一篇

杨静静1,韦莹莹1,何勇平2,江志勇1,韩玉花1,张静1,杨兵1. SiC/BiVO4复合材料光催化降解亚甲基蓝[J]. 西南师范大学学报(自然科学版), 2018, 43(5): 31-36. doi: 10.13718/j.cnki.xsxb.2018.05.006
引用本文: 杨静静1,韦莹莹1,何勇平2,江志勇1,韩玉花1,张静1,杨兵1. SiC/BiVO4复合材料光催化降解亚甲基蓝[J]. 西南师范大学学报(自然科学版), 2018, 43(5): 31-36. doi: 10.13718/j.cnki.xsxb.2018.05.006
YANG Jing-jing1, WEI Ying-ying1, HE Yong-ping2, JIANG Zhi-yong1, HAN Yu-hua1, ZHANG Jing1, YANG Bing1. On Photocatalytic Degradation of Methylene Blueby SiC/BiVO4 Composite[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(5): 31-36. doi: 10.13718/j.cnki.xsxb.2018.05.006
Citation: YANG Jing-jing1, WEI Ying-ying1, HE Yong-ping2, JIANG Zhi-yong1, HAN Yu-hua1, ZHANG Jing1, YANG Bing1. On Photocatalytic Degradation of Methylene Blueby SiC/BiVO4 Composite[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(5): 31-36. doi: 10.13718/j.cnki.xsxb.2018.05.006

SiC/BiVO4复合材料光催化降解亚甲基蓝

On Photocatalytic Degradation of Methylene Blueby SiC/BiVO4 Composite

  • 摘要: 采用化学沉淀法制备了不同配比的SiC/BiVO4复合材料,研究了在白炽灯照射下复合材料对亚甲基蓝的光催化降解性能.结果表明:2∶1型SiC/BiVO4复合材料的光催化降解能力最强,光照60 min时亚甲基蓝的降解率达90%;光降解反应速率常数为0.023 1/min,是纯SiC的22倍.采用X-射线衍射(XRD)、扫描电子显微镜(SEM)和紫外可见-漫反射光谱(UV-Vis DRS)表征了SiC/BiVO4复合材料的结构和形貌特征,初步分析了亚甲基蓝的光催化降解机理.
  • 加载中
  • [1] 李海华, 孟瑞静, 赵颖, 等.复合纳米Pd-nZVI/GAC材料制备及其降解亚甲基蓝研究[J].水处理技术, 2016,42(11):18-23.
    [2] CHEN C, MA W, ZHAO J.Semiconductor-Mediated Photodegradation of Pollutants Under Visible-Light Irradiation[J].Chemical Society Reviews,2010,39(11):4206-4219.
    [3] GANESH R S, DURGADEVI E, NAVANEETHAN M,et al.Visible Light Induced Photocatalytic Degradation of Methylene Blue and Rhodamine B from the Catalyst of CdS Nanowire[J].Chemical Physics Letters,2017,684:126-134.
    [4] DASSANAYAKE R S, RAJAKARUNA E, ABIDI N.Preparation of Aerochitin-TiO2 Composite for Efficient Photocatalytic Degradation of Methylene Blue[J].Journal of Applied Polymer Science,2018,135(8):45908.
    [5] 谢倩, 赵秀兰.TiO2/AC负载型光催化剂的制备及光催化性能的研究[J].西南大学学报(自然科学版), 2011,33(3):63-67.
    [6] 蔡万玲, 张玉英.MoO2纳米球的水热合成与光催化性能[J].西南大学学报(自然科学版), 2011,33(3):45-49.
    [7] CASADY J B, JOHNSON R W.Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications:A Review[J].Solid-State Electronics,1996,39(10):1409-1422.
    [8] ARISTOV V Y.β-SiC(100) Surface:Atomic Structures and Electronic Properties[J].Physics-Uspekhi, 2001,44(8):761-783.
    [9] WANG D, PENG Y, WANG Q,et al.High-Efficient Photo-Electron Transport Channel in SiC Constructed by Depositing Cocatalysts Selectively on Specific Surface Sites for Visible-Light H2 Production[J].Applied Physics Letters,2016,108(16):187-189.
    [10] YANG J, ZENG X, CHEN L,et al.Photocatalytic Water Splitting to Hydrogen Production of Reduced Graphene Oxide/SiC Under Visible Light[J].Applied Physics Letters,2013,102(8):1-4.
    [11] PENG Y, HAN G, WANG D,et al.Improved H2 Evolution Under Visible Light in Heterostructured SiC/CdS Photocatalyst:Effect of Lattice Match[J].International Journal of Hydrogen Energy,2017,42(21):14409-14417.
    [12] WANG Y, ZHANG L, ZHANG X,et al.Openmouthed β-SiC Hollow-Sphere with Highly Photocatalytic Activity for Reduction of CO2 with H2O[J].Applied Catalysis B:Environmental, 2017,206:158-167.
    [13] LU W, GUO L W, JIA Y P,et al.Significant Enhancement in Photocatalytic Activity of High Quality SiC/graphene Core-Shell Heterojunction with Optimal Structural Parameters[J].RSC Advances, 2014,4(87):46771-46779.
    [14] ZHU K, GUO L, LIN J,et al.Graphene Covered SiC Powder as Advanced Photocatalytic Material[J].Applied Physics Letters,2012,100(2):192-195.
    [15] XU H, GAN Z, ZHOU W,et al.A Metal-Free 3C-SiC/g-C3N4 Composite with Enhanced Visible Light Photocatalytic Sctivity[J].RSC Advances, 2017,7(63):40028-40033.
    [16] TIAN Y, CHANG B, YANG Z,et al.Graphitic Carbon Nitride-BiVO4 Heterojunctions:Simple Hydrothermal Synthesis and High Photocatalytic Performances[J].RSC Advances, 2014,4(8):4187-4193.
    [17] NG Y H, IWASE A, KUDO A,et al.Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting[J].Journal of Physical Chemistry Letters, 2010,1(17):2607-2612.
    [18] 李欣, 王铁成, 屈广周, 等.碳纳米管/钒酸铋光催化降解盐酸四环素[J].环境工程学报, 2017,11(5):2738-2742.
    [19] WANG D, GUO Z, PENG Y,et al.Visible Light Induced Photocatalytic Overall Water Splitting Over Micro-SiC Driven by the Z-Scheme System[J].Catalysis Communications,2015,61:53-56.
    [20] YANG J, YANG Y, ZENG X, et al.Mechanism of Water Splitting to Hydrogen by Silicon Carbide Nanoparticles[J].Science of Advanced Materials, 2013,5(2):155-159.
    [21] 刘阳龙, 郑玉婴, 曹宁宁, 等.水热法合成铁掺杂的硫化镉及光催化性能[J].材料工程, 2017,45(10):12-17.
    [22] 刘乃亮, 庞波, 理莎莎, 等.BiVO4/rGO的水热控制合成及其光催化性能研究[J].功能材料, 2017,48(10):10077-10081,10088.
    [23] LIU X, ZHANG Y, JIA Y,et al.Visible Light-Responsive Carbon-Decorated p-Type Semiconductor CaFe2O4 Nanorod Photocatalyst for Efficient Remediation of Organic Pollutants[J].Chinese Journal of Catalysis,2017,38(10):1770-1779.
    [24] KUDO A, MISEKI Y.Heterogeneous Photocatalyst Materials for Water Splitting[J].Chemical Society Reviews,2009,38(1):253-278.
  • 加载中
计量
  • 文章访问数:  994
  • HTML全文浏览数:  803
  • PDF下载数:  231
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-11-26

SiC/BiVO4复合材料光催化降解亚甲基蓝

  • 1. 重庆化工职业学院 环境与质量检测系, 重庆 401228;
    2. 中国航油集团重庆石油有限公司, 重庆 401120

摘要: 采用化学沉淀法制备了不同配比的SiC/BiVO4复合材料,研究了在白炽灯照射下复合材料对亚甲基蓝的光催化降解性能.结果表明:2∶1型SiC/BiVO4复合材料的光催化降解能力最强,光照60 min时亚甲基蓝的降解率达90%;光降解反应速率常数为0.023 1/min,是纯SiC的22倍.采用X-射线衍射(XRD)、扫描电子显微镜(SEM)和紫外可见-漫反射光谱(UV-Vis DRS)表征了SiC/BiVO4复合材料的结构和形貌特征,初步分析了亚甲基蓝的光催化降解机理.

English Abstract

参考文献 (24)

目录

/

返回文章
返回