M-矩阵最小特征值的上界序列
Sequences of Upper Bounds for Minimum Eigenvalue of M-Matrix
-
摘要: M-矩阵最小特征值的估计是矩阵理论研究中的重要组成部分.如果上下界能够表示为关于M-矩阵元素的易于计算的函数,那么这种估计价值更高.通过构造3个收敛序列得到M-矩阵最小特征值的新界值.该方法易于计算且能得到较紧的界,数值算例表明其结果比有关结论更加精确.Abstract: Estimation the bounds for the minimum eigenvalue of M-matrix is important part in the theory of matrices. It is more practical value when the bounds are expressed easily calculated function in element of matrix. New bounds for the minimum eigenvalue of M-matrix were obtained by constructing three convergent sequences. The method can easily and tightly get the better bounds. Numerical example is given to illustrate the effectiveness by comparing with the relevant conclusions.
-
Key words:
- M-matrix /
- minimum eigenvalue /
- upper bounds /
- nonnegative matrix /
- spectral radius .
-
-
[1] HORN R A,JOHNSON C R.Topics in Matrix Analysis[M].北京:人民邮电出版社,2005. [2] VARGA R S.Matrix Iterative Analysis[M].2版.北京:科学出版社, 2006. [3] SHIVAKUMAR P N,WILLIAMS J J,YE Q, et al.On Two-Side Bounds Related to Weakly Diagonally Dominant M-Matrices with Applications to Digital Circuit Dynamics[J].SIAM J Matrix Anal Appl,1996,17(2):298-312. [4] 逄明贤. 矩阵谱论[M].长春:吉林大学出版社, 1989. [5] 章伟, 黄廷祝. 不可约M-矩阵最小特征值的估计[J].工程数学学报,2004,21(8):31-34. [6] SCHWENK A J.Tight Bounds on the Spectral Radius of Asymmetric Nonnegative Matrices[J].Linear Algebra Appl, 1986, 75(3):257-265. [7] KOLOTILINA L Y.Lower Bounds for the Perron Root of a Nonnegative Matrix[J].Linear Algebra Appl,1993,180(93):133-151. [8] SZYLD D B.A Sequence of Lower Bounds for the Spectral Radius of Nonnegative Matrices[J].Linear Algebra Appl,1992,174:239-242. [9] 钟琴, 赵春燕, 王妍, 等.M-矩阵最小特征值的上界估计[J].数学的实践与认识,2017, 47(20):216-219. [10] 孙德淑.非负矩阵Hadamard积的谱半径上界和M-矩阵Fan积的最小特征值下界的新估计[J].西南师范大学学报(自然科学版),2016,41(2):7-11. -
计量
- 文章访问数: 1055
- HTML全文浏览数: 731
- PDF下载数: 173
- 施引文献: 0