一类区域分数阶Schrödinger方程的基态解
Ground State Solutions for a Regional Fractional Schrodinger Equation
-
摘要: 用变分方法研究了区域分数阶Schrödinger方程(-Δ)ραu+V(x)u=f(x,u) x∈RN,u∈Hα(RN)获得了该方程基态解的存在性.Abstract: In this article, the existence of nontrivial ground state solution for a time-independent regional fractional schrodinger equation(-Δ)ραu+V(x)u=f(x,u) x∈RN,u∈Hα(RN)has been obtained by using the variational method.
-
Key words:
- variational method /
- mountain pass theorem /
- ground state solution .
-
-
[1] GUAN Q Y,MA Z M. Reflected Symmetric α-Stable Processes and Regional Fractional Laplacian[J].Probab Theory Related Fields, 2006,134(4):649-694. [2] GUAN Q Y. Integration by Parts Formula for Regional Fractional Laplacian[J].CommMathPhys, 2006, 266(2):289-329. [3] FELMER P, TORRES C. Non-linear Schrödinger Equation with Non-Local Regional Diffusion[J].CalcVarPartial Differential Equations,2015,54(1):75-98. [4] NEZZA E D,PALATUCCI G,VALDINOCI E. Hitchhiker's Guide to the Fractional Sobolev Spaces[J]. Bull Sci Math, 2011,136(5):521-573. [5] PU Y,LIU J,TANG C L. Ground State Solutions for Non-Local Fractional Schrödinger Equations[J].ElectronJDifferential Equations,2015, 223:1-16. [6] FELMER P,QUAAS A, TAN J G. Positive Solutions of the Nonlinear Schrödinger Equation with the Fractional Laplacian[J].ProcRoySocEdinburgh Sect, 2012, 142(6):1237-1262. [7] CHENG M. Bound State for the Fractional Schrödinger Equation with Unbounded Potential[J]. J Math Phys,2012, 53(4):298. [8] GE B,ZHANG C. On the Superlinear Problems Involving the Fractional Laplacian[J].RevRAcadCiencExactas Fís NatSerA Math, 2016,110(2):343-355. [9] 刘晓琪,欧增奇. 一类Kirchhoff型分数阶p-拉普拉斯方程无穷解的存在性[J].西南大学学报(自然科学版),2017, 39(4):70-75. -
计量
- 文章访问数: 783
- HTML全文浏览数: 479
- PDF下载数: 88
- 施引文献: 0