基于神经网络的UWB室内定位算法
Application of Neural Dynamic Algorithm for Ultra Wide Band Indoor Positioning Systems
-
摘要: 定位技术的迅速发展,使它渗透到了人们的生产生活中,因此,对定位技术的完善和提升变得尤为重要.一些传统定位技术,如红外线、超声波、蓝牙、RFID等,由于室内环境的复杂性,导致定位精度有所损失.UWB作为一种无载波通信技术,其诸多优点可以使它在视距传输中获得良好的定位效果,但是实际环境中的非视距传输,会使其受到影响而产生误差.采用TOA定位方法,辅以神经网络算法,可在寻求优化解的过程中不断减小误差,实验仿真表明,该算法在复杂的室内传输中具有较高的定位精度.Abstract: The indoor positioning technologies are developing rapidly as the requirements of people are changing constantly. However, traditional positioning technologies, like infrared, ultrasound, Bluetooth and RFID, cannot play a significant role in real-time indoor positioning. Ultra wide band indoor positioning technology, a non-carrier communication technology, is used in line-of sight transmission research for its many advantages. To address the errors induces by the obstacles in non-line-of-sight transmission, this paper proposes the neural dynamic algorithm to optimize the indoor positioning problem. The simulation results also show that the proposed algorithm can obtain high positioning accuracy in complex indoor transmission environment.
-
Key words:
- neural dynamic algorithm /
- ultra wide band /
- time of arrival /
- indoor positioning .
-
-
[1] SUSKI W,BANERJEE S,HOOVER A.Using a Map of Measurement Noise to Improve UWB Indoor Position Tracking[J].IEEE Transactions on Instrumentation and Measurement.2013, 62(8):2228-2236. [2] ARIAS-DE-REYNA E.A Cooperative Localization Algorithm for UWB Indoor Sensor Networks[J].Wireless Personal Communications,2013,72(1):85-99. [3] LASSABE F,CANALDA P,CHATONNAY P.Indoor Wi-Fi Positioning:Techniques and Systems[J].Annals of Telecommunications,2009,64(9):651-664. [4] 李会勇, 高昕艳, 徐政五.UWB在室内高速无线传输中的应用研究[J].电子科技大学学报, 2003, 32(6):604-607. [5] 潘晓明, 杨绪君, 李传东.时滞分数阶神经网络的稳定性分析[J].西南大学学报(自然科学版), 2016,38(5):168-173. [6] 屠晓东.基于UWB信号的多基站与单基站定位算法的研究与性能分析[D].青岛:中国海洋大学, 2012. [7] 田孝华, 廖桂生.一种有效减小非视距传播影响的TOA定位方法[J].电子学报, 2003, 31(9):1429-1432. [8] CHAN Y T,HO K C.A Simple and Efficient Estimator for Hyperbolic Location[J].IEEE Transactions on Signal Processing,1994,42(8):1905-1915. [9] FOY W H.Position-Location Solutions by Taylor-Series Estimation[J].IEEE Transactions on Aerospace and Electronic Systems,1976(2):187-194. [10] YANG Y,Cao J.Solving Quadratic Programming Problems by Delayed Projection Neural Network[J].IEEE Transactions on Neural Network, 2006,17(6):1630-1634. [11] YANG Y Q,XU X Y,ZHU D Q.The Neural Network for Solving Convex Nonlinear Programming Problem[J].Lecture Notes in Computer Science, 2006,4113:494-499. -
计量
- 文章访问数: 1258
- HTML全文浏览数: 731
- PDF下载数: 100
- 施引文献: 0