[1]
|
SWIGERT C J. Pattern Identification by Spatial Filtering in A Neuron Network Model[J]. International J Neurosci, 1971, 2(6):249-264.
|
[2]
|
MASSON G L, PRZEDBORSKI S, ABBOTT L F, A Computational Model of Motor Neuron Degeneration[J]. Neuron, 2014, 83(4):975-988.
|
[3]
|
INDIVERI G, LINARES-BARRANCO B, HAMILTON T J, et al. Neuromorphic Silicon Neuron Circuits[J]. Front Neurosci, 2011, 5(5):00073-1-00073-23.
|
[4]
|
WU X Y, SAXENA V, ZHU K H, et al. A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses and In-Situ Learning[J]. IEEE Trans. Circuits Syst. Ⅱ:Express Briefs, 2015, 62(11):1088-1092.
|
[5]
|
IMAM N, ARTHUR J, MERROLLA P, et al. A Digital NeurosynapticCore Using Event-Driven QDI Circuits[J]. IEEE International Symposium on Circuits and Systems, 2012(1):25-32.
|
[6]
|
INDIVERIG, CHICCAE, DOUGLASR. A VLSI Array of Low-Power Spiking Neurons and BistableSynapses with Spike-Timing Dependent Plasticity[J]. IEEE Trans. Neural Netw, 2006, 17(1):211-221.
|
[7]
|
BENJAMIN B V, GAO P, MCQUINN E. Neurogrid:A Mixed-Analog-Digital Multichip Systemfor Large-Scale Neural Simulations[J]. Proc. IEEE, 2014, 102(5):699-716.
|
[8]
|
HSUJ. IBM's New Brain[J]. IEEE Spect, 2014, 51(10):17-19.
|
[9]
|
SCHEMMEL J, BRVDERLE D, GRüBL A, et al. A Water-Scale Neuromorphic Hardware System for Large-Scale Neural Modeling[J]. IEEE International Symposium on Circuits and Systems, 2010(1):1947-1950.
|
[10]
|
PRUCNAL P R, SHASTRI B J, LIMA T F, et al. Recent Progress in Semiconductor Excitable Lasers for Photonic Spike Processing[J]. Advances in Optics and Photon, 2016, 8(2):228-299.
|
[11]
|
SHASTRI B J, NAHMIAS M A, TAIT A N, et al. Simpel:Circuit Model for Photonic Spike Processing Laser Neurons[J]. Opt Express, 2015, 23(6):8029-8044.
|
[12]
|
BRUNSTEIN M, YACOMOTTI A M, SAGNES I, et al. Excitability and Self-Pulsing in a Photonic Crystal Nanocavity[J]. Phys Rev A, 2012, 85(3):031803-1-031803-7.
|
[13]
|
HURTADO A, JAVALOYES J. Controllable Spiking Patterns in Long-Wavelength Vertical Cavity Surface Emitting Lasers for Neuromorphic Photonics Systems[J]. Appl Phys Lett, 2015, 107(24):241103-1-241103-5.
|
[14]
|
IZHIKEVICH E M, Which Model to Use for Cortical Spiking Neurons?[J]. IEEE Trans Neural Netw, 2004, 15(5):1063-1070.
|
[15]
|
GARBIN B, DOLCEMASCOLO A, PRATI F, et al. Refractory Period of An Excitable Semiconductor Laser with Optical Injection[J]. Phys Rev E, 2017, 95(1):012214-1-012214-5.
|
[16]
|
KOYAMA F. Recent Advances of VCSEL Photonics[J]. IEEE J LightwTechnol, 2007, 24(12):4502-4513.
|
[17]
|
何秀, 熊中碧, 林晓东, 等. 光注入下VCSEL在阈值附近的非线性响应特性[J]. 西南大学学报(自然科学版), 2017, 39(3):170-175.
|
[18]
|
HURTADO A, HENNING I D, ADAMS M J. Optical Neuron Using Polarisation Switching in a 1550 nm-VCSEL[J]. Opt Express, 2010, 18(24):25170-25176.
|
[19]
|
ROBERTSON J, DENG T, JAVALOYES J, et al. Controlled Inhibition of Spiking Dynamics in VCSELs for Neuromorphic Photonics:Theory and Experiments[J]. Opt Lett, 2017, 42(8):1560-1563.
|
[20]
|
操良平, 董晓云, 梁兴连, 等. 偏振改变光反馈垂直腔面发射激光混沌系统时延特征的隐藏[J]. 西南大学学报(自然科学版), 2014, 36(7):149-155.
|
[21]
|
AL-SEYAB R, SCHIRES K, KHAN N A, et al. Dynamics of Polarized Optical Injection in 1550 nm VCSELs:Theory and Experiments[J]. IEEE J Sel Top in Quantum Electron, 2011, 17(5):1242-1249.
|
[22]
|
JIANG B, WU Z M, DENG T, et al. Polarization Switching Characteristics of 1550 nm Vertical-Cavity Surface-Emitting Lasers Subject to Double Polarization Pulsed Injection[J]. IEEE J Quantum Electron, 2016, 52(11):2400707-1-2400707-10.
|
[23]
|
DENG T, ROBERTSON J, HURTADO A. Controlled Propagation of Spiking Dynamics in Vertical-Cavity Surface-Emitting Lasers:Towards Neuromorphic Photonic Networks[J]. IEEE J Sel Top in Quantum Electron, 2017, 23(6):1800408-1-1800408-8.
|