留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

VCSEL光子神经Spiking动力学的抑制特性研究

上一篇

下一篇

李硕,马绍玲,王之靖,邓涛. VCSEL光子神经Spiking动力学的抑制特性研究[J]. 西南师范大学学报(自然科学版), 2018, 43(9): 79-85. doi: 10.13718/j.cnki.xsxb.2018.09.013
引用本文: 李硕,马绍玲,王之靖,邓涛. VCSEL光子神经Spiking动力学的抑制特性研究[J]. 西南师范大学学报(自然科学版), 2018, 43(9): 79-85. doi: 10.13718/j.cnki.xsxb.2018.09.013
LI Shuo, MA Shao-ling, WANG Zhi-jing, DENG Tao. Investigation of the Inhibited Characteristics of Spiking Dynamics of VCSEL Photonic Neuron[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(9): 79-85. doi: 10.13718/j.cnki.xsxb.2018.09.013
Citation: LI Shuo, MA Shao-ling, WANG Zhi-jing, DENG Tao. Investigation of the Inhibited Characteristics of Spiking Dynamics of VCSEL Photonic Neuron[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(9): 79-85. doi: 10.13718/j.cnki.xsxb.2018.09.013

VCSEL光子神经Spiking动力学的抑制特性研究

Investigation of the Inhibited Characteristics of Spiking Dynamics of VCSEL Photonic Neuron

  • 摘要: 理论研究了外部扰动信号的强度和持续时间对1 300 nm-VCSEL光子神经spiking动力学抑制特性的影响.研究结果表明:VCSEL在适当的外部连续光注入下可工作在重复频率为亚纳秒级的连续spiking区;在引入外部扰动信号后,对于较小的扰动信号强度,VCSEL的spiking动力学抑制特性不受影响.随着扰动信号强度的增加,VCSEL在扰动信号作用区可激发出重复频率更低的spikes信号.当扰动信号强度达到一定水平后,VCSEL在扰动信号作用区激发的spikes信号可被有效抑制.此外,被抑制的spikes信号区与外部扰动信号的持续时间基本一致.对于一定的扰动信号强度和持续时间,VCSEL激发的spikes信号在扰动信号作用范围可被完全抑制.
  • 加载中
  • [1] SWIGERT C J. Pattern Identification by Spatial Filtering in A Neuron Network Model[J]. International J Neurosci, 1971, 2(6):249-264.
    [2] MASSON G L, PRZEDBORSKI S, ABBOTT L F, A Computational Model of Motor Neuron Degeneration[J]. Neuron, 2014, 83(4):975-988.
    [3] INDIVERI G, LINARES-BARRANCO B, HAMILTON T J, et al. Neuromorphic Silicon Neuron Circuits[J]. Front Neurosci, 2011, 5(5):00073-1-00073-23.
    [4] WU X Y, SAXENA V, ZHU K H, et al. A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses and In-Situ Learning[J]. IEEE Trans. Circuits Syst. Ⅱ:Express Briefs, 2015, 62(11):1088-1092.
    [5] IMAM N, ARTHUR J, MERROLLA P, et al. A Digital NeurosynapticCore Using Event-Driven QDI Circuits[J]. IEEE International Symposium on Circuits and Systems, 2012(1):25-32.
    [6] INDIVERIG, CHICCAE, DOUGLASR. A VLSI Array of Low-Power Spiking Neurons and BistableSynapses with Spike-Timing Dependent Plasticity[J]. IEEE Trans. Neural Netw, 2006, 17(1):211-221.
    [7] BENJAMIN B V, GAO P, MCQUINN E. Neurogrid:A Mixed-Analog-Digital Multichip Systemfor Large-Scale Neural Simulations[J]. Proc. IEEE, 2014, 102(5):699-716.
    [8] HSUJ. IBM's New Brain[J]. IEEE Spect, 2014, 51(10):17-19.
    [9] SCHEMMEL J, BRVDERLE D, GRüBL A, et al. A Water-Scale Neuromorphic Hardware System for Large-Scale Neural Modeling[J]. IEEE International Symposium on Circuits and Systems, 2010(1):1947-1950.
    [10] PRUCNAL P R, SHASTRI B J, LIMA T F, et al. Recent Progress in Semiconductor Excitable Lasers for Photonic Spike Processing[J]. Advances in Optics and Photon, 2016, 8(2):228-299.
    [11] SHASTRI B J, NAHMIAS M A, TAIT A N, et al. Simpel:Circuit Model for Photonic Spike Processing Laser Neurons[J]. Opt Express, 2015, 23(6):8029-8044.
    [12] BRUNSTEIN M, YACOMOTTI A M, SAGNES I, et al. Excitability and Self-Pulsing in a Photonic Crystal Nanocavity[J]. Phys Rev A, 2012, 85(3):031803-1-031803-7.
    [13] HURTADO A, JAVALOYES J. Controllable Spiking Patterns in Long-Wavelength Vertical Cavity Surface Emitting Lasers for Neuromorphic Photonics Systems[J]. Appl Phys Lett, 2015, 107(24):241103-1-241103-5.
    [14] IZHIKEVICH E M, Which Model to Use for Cortical Spiking Neurons?[J]. IEEE Trans Neural Netw, 2004, 15(5):1063-1070.
    [15] GARBIN B, DOLCEMASCOLO A, PRATI F, et al. Refractory Period of An Excitable Semiconductor Laser with Optical Injection[J]. Phys Rev E, 2017, 95(1):012214-1-012214-5.
    [16] KOYAMA F. Recent Advances of VCSEL Photonics[J]. IEEE J LightwTechnol, 2007, 24(12):4502-4513.
    [17] 何秀, 熊中碧, 林晓东, 等. 光注入下VCSEL在阈值附近的非线性响应特性[J]. 西南大学学报(自然科学版), 2017, 39(3):170-175.
    [18] HURTADO A, HENNING I D, ADAMS M J. Optical Neuron Using Polarisation Switching in a 1550 nm-VCSEL[J]. Opt Express, 2010, 18(24):25170-25176.
    [19] ROBERTSON J, DENG T, JAVALOYES J, et al. Controlled Inhibition of Spiking Dynamics in VCSELs for Neuromorphic Photonics:Theory and Experiments[J]. Opt Lett, 2017, 42(8):1560-1563.
    [20] 操良平, 董晓云, 梁兴连, 等. 偏振改变光反馈垂直腔面发射激光混沌系统时延特征的隐藏[J]. 西南大学学报(自然科学版), 2014, 36(7):149-155.
    [21] AL-SEYAB R, SCHIRES K, KHAN N A, et al. Dynamics of Polarized Optical Injection in 1550 nm VCSELs:Theory and Experiments[J]. IEEE J Sel Top in Quantum Electron, 2011, 17(5):1242-1249.
    [22] JIANG B, WU Z M, DENG T, et al. Polarization Switching Characteristics of 1550 nm Vertical-Cavity Surface-Emitting Lasers Subject to Double Polarization Pulsed Injection[J]. IEEE J Quantum Electron, 2016, 52(11):2400707-1-2400707-10.
    [23] DENG T, ROBERTSON J, HURTADO A. Controlled Propagation of Spiking Dynamics in Vertical-Cavity Surface-Emitting Lasers:Towards Neuromorphic Photonic Networks[J]. IEEE J Sel Top in Quantum Electron, 2017, 23(6):1800408-1-1800408-8.
  • 加载中
计量
  • 文章访问数:  684
  • HTML全文浏览数:  538
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-10-11

VCSEL光子神经Spiking动力学的抑制特性研究

  • 西南大学 物理科学与技术学院, 重庆 400715

摘要: 理论研究了外部扰动信号的强度和持续时间对1 300 nm-VCSEL光子神经spiking动力学抑制特性的影响.研究结果表明:VCSEL在适当的外部连续光注入下可工作在重复频率为亚纳秒级的连续spiking区;在引入外部扰动信号后,对于较小的扰动信号强度,VCSEL的spiking动力学抑制特性不受影响.随着扰动信号强度的增加,VCSEL在扰动信号作用区可激发出重复频率更低的spikes信号.当扰动信号强度达到一定水平后,VCSEL在扰动信号作用区激发的spikes信号可被有效抑制.此外,被抑制的spikes信号区与外部扰动信号的持续时间基本一致.对于一定的扰动信号强度和持续时间,VCSEL激发的spikes信号在扰动信号作用范围可被完全抑制.

English Abstract

参考文献 (23)

目录

/

返回文章
返回