基于大数据的南京市共享单车时空特征研究
On Space-Time Characteristics of Shared Bikes in Nanjing Based on Big Data
-
摘要: 共享单车的兴起极大地便利了人们的短距离出行,利用单车大数据来挖掘和分析短距离的出行规律已成为智慧城市和智慧交通的重要热点.利用南京市的摩拜单车时空数据,研究了单车的时空分布规律与差异,并重点挖掘了早晚高峰时刻以及区域间单车流动规律等,研究表明:①南京市整体早、晚高峰时间分别为7:10-8:37和17:15-18:25;副中心早高峰比主城区早35 min开始,且晚高峰持续时间长;②早、晚高峰高强度骑行主要分布在以新街口、百家湖等为中心的区域;主城区和副中心区有着骑行差异,短距离骑行主城区相对副中心具有更高的比例,副中心则具有更多的长距离骑行;③单车骑行围绕地铁站而显现聚集趋势,并且集中于地铁1,2,3号线区域.Abstract: The rise of the current shared bikes greatly facilitates people's travel of short distances, and with the big data of shared bikes, studies have been done to mine and analyze the traveling pattern of people in the field of Smart City and Smart Transportation which has become a important focus. With the space-time data of the MOBIKE located in Nanjing studies the space-time pattern regularity and differences of the shared bikes and focus on mining the rush hour and regional flow of the shared bikes, etc.. The results show that, firstly, the overall morning rush time of Nanjing is about 7:10-8:37, and the evening rush time is nearly 17:15-18:25; the morning rush hours of sub-center of Jiangning District began 35 minutes earlier than the main urban area, and the evening rush last for a longer time. Secondly, the high intensity riding in the morning and evening rush is mainly distributed in the main urban area centered around Xinjiekou and the sub-center of Baijia Lake. Thirdly, there are some riding difference laying between the main urban area and the Baijia Lake, the deputy central district. The main urban area has a greater proportion in short distance riding, while the deputy central district has more long-distance riding. Eventually, cycling shows a tendency to gather around subway stations, and is concentrated in metro line 1, 2, and 3.
-
Key words:
- the big data of shared bikes /
- short distance travel /
- morning and evening rush /
- regional core .
-
-
[1] 王振坡, 李锦, 程浩岩. 我国大城市居民出行特征演变与交通发展研究[J]. 城市, 2016(8):73-79. [2] 赵鹏军, 万海荣. 我国大城市交通拥堵特征与国际治理经验借鉴探讨[J]. 世界地理研究, 2016, 25(5):48-57. [3] 宗会明, 戴技才, 乔宏, 等. 渝中区综合交通发展格局及拥堵原因解析[J]. 西南大学学报(自然科学版), 2014, 36(2):143-149. [4] 刘经南, 方媛, 郭迟, 等. 位置大数据的分析处理研究进展[J]. 武汉大学学报(信息科学版),2014, 39(4):379-385. [5] 张俊涛, 李志勇, 张浩, 等. 利用出租车轨迹数据估计城市道路拥堵状况[J]. 测绘工程,2016, 25(9):68-72,76. [6] 付子圣, 李秋萍, 柳林, 等. 利用GPS轨迹二次聚类方法进行道路拥堵精细化识别[J]. 武汉大学学报(信息科学版), 2017, 42(9):1264-1270. [7] 李军, 秦其明, 游林, 等. 利用浮动车数据提取停车场位置[J]. 武汉大学学报(信息科学版),2013, 38(5):599-603. [8] 杨伟, 艾廷华. 基于车辆轨迹大数据的道路网更新方法研究[J]. 计算机研究与发展, 2016, 53(12):2681-2693. [9] NIU Xiao-guang, ZHU Ying, CAO Qing-qing,et al.An Online-Traffic-Prediction Based Route Finding Mechanism for Smart City[J].International Journal of Distributed Sensor Networks, 2015, 2015. [10] LI Qing-quan, ZENG Zhe, ZHANG Tong, et al.Path-Finding Through Flexible Hierarchical Road Networks:An Experiential Approach Using Taxi Trajectory Data[J].International Journal of Applied Earth Observations and Geoinformation, 2011, 13(1):110-119. [11] 吉根林, 赵斌. 时空轨迹大数据模式挖掘研究进展[J]. 数据采集与处理, 2015, 30(1):47-58. [12] 夏英, 梁中军, 王国胤. 基于时空分析的短时交通流量预测模型[J]. 南京大学学报(自然科学版),2010, 46(5):552-560. [13] 赵鹏祥. 基于轨迹聚类的城市热点区域提取与分析方法研究[D]. 武汉:武汉大学, 2015. [14] 姜晓睿, 田亚, 蒋莉, 等. 城市道路交通数据可视分析综述[J]. 中国图象图形学报, 2015, 20(4):454-467. [15] 沈敬伟, 周廷刚, 朱晓波. 基于GPS浮动车数据的交通信息时空分布研究[J]. 西南大学学报(自然科学版), 2015, 37(8):157-162. [16] 王祖超, 袁晓如. 轨迹数据可视分析研究[J]. 计算机辅助设计与图形学学报, 2015, 27(1):9-25. [17] 梁吉业, 冯晨娇, 宋鹏. 大数据相关分析综述[J]. 计算机学报, 2016, 39(1):1-18. -
计量
- 文章访问数: 1203
- HTML全文浏览数: 738
- PDF下载数: 108
- 施引文献: 0