留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

改进的分数阶辅助方程方法及其在非线性空间时间分数阶微分方程中的应用

上一篇

下一篇

赵梅妹. 改进的分数阶辅助方程方法及其在非线性空间时间分数阶微分方程中的应用[J]. 西南师范大学学报(自然科学版), 2018, 43(11): 24-29. doi: 10.13718/j.cnki.xsxb.2018.11.005
引用本文: 赵梅妹. 改进的分数阶辅助方程方法及其在非线性空间时间分数阶微分方程中的应用[J]. 西南师范大学学报(自然科学版), 2018, 43(11): 24-29. doi: 10.13718/j.cnki.xsxb.2018.11.005
ZHAO Mei-mei. On Improved Fractional Sub-Equation Method and Its Applications to Nonlinear Space-Time Fractional Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 24-29. doi: 10.13718/j.cnki.xsxb.2018.11.005
Citation: ZHAO Mei-mei. On Improved Fractional Sub-Equation Method and Its Applications to Nonlinear Space-Time Fractional Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 24-29. doi: 10.13718/j.cnki.xsxb.2018.11.005

改进的分数阶辅助方程方法及其在非线性空间时间分数阶微分方程中的应用

On Improved Fractional Sub-Equation Method and Its Applications to Nonlinear Space-Time Fractional Equations

  • 摘要: 利用改进的分数阶辅助方程方法求解具有修正的Riemann-Liouville分数阶导数的非线性发展方程组.将该方法应用到空间-时间分数阶Broer-Kaup方程组和空间-时间分数阶长水波近似方程组,并通过符号计算得到这两类方程组的精确行波解.结果表明,该方法能十分有效和便捷地得到时间-空间分数阶非线性微分方程组的解.
  • 加载中
  • [1] GAZIZOV R K,IBRAGIMOV N H,LUKASHCHUK S Y.Nonlinear Self-Adjointness Conservation Laws and Exact Solutions of Time-Fractional Kompaneets Equations[J].Communications in Nonlinear Science and Numerical Simulation,2015,23(1-3):153-163.
    [2] WEST B J.Exact Solution to Fractional Logistic Equation[J].Physica A:Statistical Mechanics and Its Applications,2015,429:103-108.
    [3] GUPTA A K,SAHA RAY S.Numerical Treatment for the Solution of Fractional Fifth-Order Sawada-Kotera Equation Using Second Kind Chebyshev Wavelet Method[J].Applied Mathematical Modelling,2015,39(17):5121-5130.
    [4] ODIBAT Z,MOMANI S.The Variational Iteration Method:An Efficient Scheme for Handling Fractional Partial Differential Equations in Fluid Mechanics[J].Computers and Mathematics with Applications,2009,58(11-12):2199-2208.
    [5] KOLWANKAR K M,GANGAL A D.Fractional Differentiability of Nowhere Differentiable Functions and Dimensions[J].Chaos,1996,6(4):505-513.
    [6] KOLWANKAR K M,GANGAL A D.Holder Exponents of Irregular Signals and Local Fractional Derivatives[J].Pramana-Journal of Physics,1997,48(1):49-68.
    [7] KOLWANKAR K M,GANGAL A D.Local Fractional Fokker-Planck Equation[J].Physical Review Letters,1998,80:214-217.
    [8] CHEN Y,YAN Y,ZHANG K W.On the Local Fractional Derivative[J].Journal of Mathematical Analysis and Applications,2010,362(1):17-33.
    [9] WU G C.A Fractional Variational Iteration Method for Solving Fractional Nonlinear Differential Equations[J].Computers and Mathematics with Applications,2011,61(8):2186-2190.
    [10] SUN H G,CHEN W.Fractal Derivative Multi-Scale Model of Fluid Particle Transverse Accelerations in Fully Developed Turbulence[J].Science in China Series E:Technological Sciences,2009,52(3):680-683.
    [11] CHEN W,SUN H G.Multiscale Statistical Model of Fully-Developed Turbulence Particle Accelerations[J].Modern Physics Letters B,2009,23(3):449-452.
    [12] CRESSON J.Scale Calculus and the Schrodinger Equation[J].Journal of Mathematical Physics, 2003,44(11):4907-4938.
    [13] ADDA F B,CRESSON J.About Non-Differentiable Functions[J]. Journal of Mathematical Analysis and Applications,2001,263:721-737.
    [14] BIALA T A,JATOR S N.Block Implicit Adams Methods for Fractional Differential Equations[J].Chaos,Solitons and Fractals,2015,81:365-377.
    [15] KOLK M,PEDAS A,TAMME E.Modified Spline Collocation for Linear Fractional Differential Equations[J].Journal of Computational and Applied Mathematics,2015, 283:28-40.
    [16] JUMARIE G.Modified Riemann-Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results[J].Computers and Mathematics with Applications,2006,51(9-10):1367-1376.
    [17] El-SAYED A M A,RIDA S Z,ARAFA A A M.Exact Solutions of Fractional-Order Biological Population Model[J].Communications in Theoretical Physics,2009,52(12):992-996.
    [18] ZHANG S,ZHANG H Q.Fractional Sub-Equation Method and Its Applications to Nonlinear Fractional PDEs[J].Physics Letters A,2011,375(7):1069-1073.
    [19] WANG M.Solitary Wave Solutions for Variant Boussinesq Equations[J].Physics Letters A,1995, 199(3-4):169-172.
    [20] JUMARIE G.Fractional Partial Differential Equations and Modified Riemann-Liouville Derivative New Methods for Solution[J].Journal of Applied Mathematics and Computing,2007,24(1):31-48.
    [21] JUMARIE G.Cauchy's Integral Formula via The Modified Riemann-Liouville Derivative for Analytic Functions of Fractional Order[J].Applied Mathematics Letters,2010,23(12):1444-1450.
    [22] GUO S M,Mei L Q,Li Y,et al.The Improved Fractional Sub-Equation Method and Its Applications to the Space-Time Fractional Differential Equations in Fluid Mechanics[J].Physics Letters A,2012,376(4):407-411.
    [23] KAUP D J.A Higher-Order Water-Wave Equation and the Method for Solving It[J].Progress of Theoretical Physics,l975,54(2):396-408.
    [24] WHITHAM G B.Variational Methods and Applications to Water Waves[J].Proceedings of the Royal Society A:Mathematical,Physicaland Engineering Sciences,1967,299(1456):6-25.
    [25] BROER L J F.Approximate Equations for Long Water Waves[J].Applied Scientific Research,1975,31(5):377-395.
    [26] KUPERSHMIDT B A.Mathematics of Dispersive Water Waves[J].Communications in Mathematical Physics,1985,99(1):51-73.
    [27] ZHOU Y B,WANG M L,WAN Y M.Periodic Wave Solutions to a Coupled KdV Equations with Variable Coefficients[J]. Physics Letters A,2003,308(1):31-36.
    [28] ZHANG S,ZONG Q A,LIU D,et al.A Generalized Exp-Function Method for Fractional Riccati Differential Equations[J]. Communications in Fractional Calculus, 2010, 1(1):48-51.
  • 加载中
计量
  • 文章访问数:  537
  • HTML全文浏览数:  382
  • PDF下载数:  20
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-02-23

改进的分数阶辅助方程方法及其在非线性空间时间分数阶微分方程中的应用

  • 西安翻译学院 基础科学系, 西安 710105

摘要: 利用改进的分数阶辅助方程方法求解具有修正的Riemann-Liouville分数阶导数的非线性发展方程组.将该方法应用到空间-时间分数阶Broer-Kaup方程组和空间-时间分数阶长水波近似方程组,并通过符号计算得到这两类方程组的精确行波解.结果表明,该方法能十分有效和便捷地得到时间-空间分数阶非线性微分方程组的解.

English Abstract

参考文献 (28)

目录

/

返回文章
返回