基于免疫危险理论的手机恶意软件检测模型
Mobile Malware Detection Model Based on Immune Danger Theory
-
摘要: 为了提高智能手机恶意软件检测的自适应性和有效性,该文提出了基于免疫危险理论的手机恶意软件检测模型,该模型由4个部分组成:数据采集、危险信号生成、共刺激信号生成和预警部分,针对不同的恶意软件,采用微分方法表达危险信号,由自适应抗原提呈细胞产生相应的共刺激信号,最后对恶意软件产生预警.通过实验验证了该文模型的自适应性和有效性.Abstract: In order to improve the adaptability and effectiveness of malware detection in mobile phones, a mobile malware detection model based on immune danger theory has been proposed in this paper. The model consists of four parts:data acquisition part, hazard signal generation part, co-stimulation signal generation part and warning part. Using differential method to express different dangerous signals, then the model produce corresponding co-stimulatory signals according to adaptive antigen presenting cells, and finally give early warning to malware. The experiment verifies the adaptability and effectiveness of this model.
-
Key words:
- mobile phone /
- immune danger theory /
- antigen presenting cells /
- malware detection .
-
-
[1] 马晋杨,徐蕾.基于Android系统的手机恶意软件检测模型[J].计算机测量与控制,2016,24(1):156-158. [2] 胡迎春,熊江.基于SMS/MMS和Bluetooth的智能手机恶意软件传播模型研究[J].西南师范大学学报(自然科学版),2016,41(9):107-112. [3] 李宏鸢.Android平台的恶意代码检测技术的研究[D].成都:电子科技大学,2013. [4] 蔡志标,彭新光.基于系统调用的Android恶意软件检测[J].计算机工程与设计,2013,34(11):3757-3761. [5] 周裕娟,张红梅,张向利,等.基于Android权限信息的恶意软件检测[J].计算机应用研究,2015,32(10):3036-3040. [6] 白金荣,王俊峰,赵宗渠.基于PE静态结构特征的恶意软件检测方法[J].计算机科学,2013,40(1):122-126. [7] NARUDIN F A,FEIZOLLAH A,ANUAR N B,et al.Evaluation of Machine Learning Classifiers for Mobile Malware Detection[J].Soft Computing,2016,20(1):343-357. [8] CANFORA G,MEDVET E,MERCALDO F,et al.Acquiring and Analyzing App Metrics for Effective Mobile Malware Detection[C]//Proceedings of the 2016 ACM on International Workshop on Security and Privacy Analytics.New Orleans:ACM,2016. [9] 王盼,梁意文.手机恶意软件检测的分布式免疫模型[J].计算机工程与应用,2016,52(16):30-35. [10] SARACINO A,SGANDURRA D,DINI G,et al.Madam:Effective and Efficient Behavior-Based Android Malware Detection and Prevention[J].IEEE Transactions on Dependable and Secure Computing,2016,15(1):83-97. -
计量
- 文章访问数: 753
- HTML全文浏览数: 581
- PDF下载数: 108
- 施引文献: 0