川渝地区雾霾时空分布特征及影响因子分析
Spatial and Temporal Distribution Characteristics and Influencing Factors Analysis of Smog in Sichuan-Chongqing
-
摘要: 利用1981-2014年川渝地面气象观测资料,分析了川渝地区雾霾的时空分布特征及影响因子,结果表明:川渝地区雾日变化总体呈下降趋势,两种雾日观测资料的倾向率分别为-6 d/10 a和-8.2 d/10 a,研究时段内未出现突变点,80年代到90年代初,雾日变化周期以2~4 a为主,21世纪后以8~10 a为主.霾日总体趋势与雾日变化相反,呈上升趋势,倾向率为8.2 d/10 a,1997年开始发生突变,90年代变化周期以2~4 a为主,2000年后4~10 a周期变化较显著.在对雾霾与风速和空气相对湿度的关系讨论中发现,整个川渝地区雾与风速的变化趋势一致,与相对湿度呈正相关;霾与风速的变化趋势相反,与相对湿度呈负相关.Abstract: The temporal and spatial distributions and long-term variation characteristics of haze were obtained for the Sichuan-Chongqing region from 1981 to 2014 by studying surface meteorological data and using the climatic statistic method. Simultaneously, the Mann-Kendall method and the Morlet wavelet analysis were used to discuss the changing trend, the change point and time period. The results show that fog days in Sichuan-Chongqing showed a downward trend, the propensity rates of two observations are -6days/10a and -8.2days/10a, respectively, the trend factors are 0.798 and 0.864, no mutation occurred during the study period. From the 1980s to the early 1990s, the main change cycle of fog days is 2 to 4 years, and after the 21st century, the main change cycle of fog days is 8 to10 years. On the contrary, the changing trend of haze days is on the rise, the propensity rates of observation is 8.2d/10a, the trend factor is 0.754, the trend of change occurred in 1997, the main change cycle of haze days is 2 to 4 yeas in 90s, and after the 21st century, the main change cycle of haze days is 4 to10 years. In discussion of the relationships between fog, haze and meteorological factors, it has been found that the trend of fog and wind speed is consistent and positively correlated with relative humidity in the whole research area, that the trend of haze and wind speed is opposite, and that it is negatively correlated with relative humidity, when considering only a single site, the results are inconsistent across site.
-
Key words:
- fog /
- haze /
- the temporal and spatial distributions /
- impact factor .
-
-
[1] 中国气象局. 雾的预报等级:GB/T27964-2011[S].北京:中国标准出版社, 2012. [2] 中国气象局. 霾的观测和预报等级:QX/T113-2010[S].北京:气象出版社, 2010. [3] 张英娟, 张培群, 王冀, 等. 1981-2013年京津冀持续性霾天气的气候特征[J]. 气象, 2015, 41(3):311-318. [4] 史军, 崔林丽. 长江三角洲城市群霾的演变特征及影响因素研究[J]. 中国环境科学, 2013, 33(12):2113-2122. [5] 吴兑, 廖碧婷, 陈慧忠, 等. 珠江三角洲地区的灰霾天气研究进展[J]. 气候与环境研究, 2014, 19(2):248-264. [6] 张天宇, 孙佳, 王勇, 等. 重庆雾日的气候特征及变化[J]. 西南大学学报(自然科学版), 2014, 36(7):1-9. [7] 周国兵, 向波, 胡春梅, 等. 基于自动能见度观测的雾和霾天气判别指标研究[J]. 西南师范大学学报(自然科学版), 2017, 42(10):78-83. [8] 唐信英, 罗磊, 王鸽, 等. 四川省大雾时空分布特征研究[J]. 高原山地气象研究[J], 2009, 29(3):60-65. [9] 卿海涛, 徐金霞, 马振峰, 等. 四川盆地雾霾灾害风险区划初探[J]. 西南大学学报(自然科学版), 2017, 39(9):1-9. [10] 重庆市气象局. 气象灾害标准:DB50/T 270-2008[S]. 北京:气象出版社, 2008. [11] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京:气象出版社, 1999:69-72. [12] 桑燕芳, 王中根, 刘昌明. 小波分析方法在水文学研究中的应用现状及展望[J]. 地理科学进展, 2013, 32(9):1413-1422. [13] 黄先成. 近43年安阳市雾日和霾日时空特征分析[J], 河南科学, 2016, 34(3):397-403. [14] 王珊, 修天阳, 孙杨, 等. 1960-2012年西安地区雾霾日数与气象因素变化规律分析[J]. 环境科学学报, 2014, 34(1):19-26. [15] 张玉成, 李亚滨. 1961-2013年黑龙江省雾霾时空分布特征及影响因子分析[J]. 黑龙江气象, 2014, 31(3):17-19, 37. -
计量
- 文章访问数: 852
- HTML全文浏览数: 662
- PDF下载数: 57
- 施引文献: 0