留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类分数阶奇异q差分方程边值问题解的存在性和唯一性

上一篇

下一篇

郭彩霞,郭建敏,田海燕,康淑瑰. 一类分数阶奇异q差分方程边值问题解的存在性和唯一性[J]. 西南师范大学学报(自然科学版), 2018, 43(12): 6-10. doi: 10.13718/j.cnki.xsxb.2018.12.002
引用本文: 郭彩霞,郭建敏,田海燕,康淑瑰. 一类分数阶奇异q差分方程边值问题解的存在性和唯一性[J]. 西南师范大学学报(自然科学版), 2018, 43(12): 6-10. doi: 10.13718/j.cnki.xsxb.2018.12.002
GUO Cai-xia, GUO Jian-min, TIAN Hai-yan, KANG Shu-gui. Existence and Uniqueness of Solution for a Class of Singular Fractional q-Difference Boundary Value Problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(12): 6-10. doi: 10.13718/j.cnki.xsxb.2018.12.002
Citation: GUO Cai-xia, GUO Jian-min, TIAN Hai-yan, KANG Shu-gui. Existence and Uniqueness of Solution for a Class of Singular Fractional q-Difference Boundary Value Problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(12): 6-10. doi: 10.13718/j.cnki.xsxb.2018.12.002

一类分数阶奇异q差分方程边值问题解的存在性和唯一性

Existence and Uniqueness of Solution for a Class of Singular Fractional q-Difference Boundary Value Problem

  • 摘要: 主要讨论了一类奇异分数阶q-差分方程边值问题,其中控制函数含有分数阶q-导数.首先利用分数阶q-差分理论将该问题转化为等价的分数阶q-积分方程,得到了相关的格林函数;其次详细地证明了积分算子的全连续性,通过运用Schauder不动点定理和Banach不动点定理,证明了该边值问题解的存在性和唯一性,证明过程中,巧妙地应用了贝塔函数,使奇异问题得以解决;最后为了说明定理的有效性,给出了一个例子.
  • 加载中
  • [1] ZHAO Q B, YANG W G. Positive Solutions for Singular Coupled Integral Boundary Value Problems of Nonlinear Higher-order Fractional q-Difference Equations[J]. Advance in Difference Equations, 2015, 2015(1):1-22.
    [2] ZHANG X G, LIU L S, WU Y H. The Uniqueness of Positive Solution for a Singular Fractional Differential System Involving Derivatives[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(6):1400-1409.
    [3] WANG L, LU X Y. Existence and Uniqueness of Solutions for a Singular System of Higher-Order Nonlinear Fractional Differential Equations with Integral Boundary Conditions[J]. Nonlinear Analysis Modelling and Control, 2013, 31(5-6):493-518.
    [4] VERMA A K, AGARWAL R P. Upper and Lower Solutions Method for Regular Singular Differential Equations with Quasi-Derivative Boundary Conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):4551-4558.
    [5] VONG S W. Positive Solutions of Singular Fractional Differential Equations with Integral Boundary Conditions[J]. Mathematical and Computer Modelling, 2013, 57(5-6):1053-1059.
    [6] BAI Z B, SUN W C. Existence and Multiplicity of Positive Solution for Singular Fractional Boundary Value Problems[J]. Computers and Mathematics with Applications, 2012, 63(9):1369-1381.
    [7] JIANG J Q, LIU L S, WU Y H. Positive Solutions to Singular Fractional Differential System with Coupled Boundary Conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(11):3061-3074.
    [8] 吕亚丹. 2n阶线性q-差分方程的奇异边值问题的谱理论[J]. 西南师范大学学报(自然科学版), 2015, 40(3):11-17.
    [9] CHAI G Q. Anti-Periodic Boundary Value Problems of Fractional Differential Equations with the Riemann-Liouville Fractional Derivative[J]. Advances in Difference Equations, 2013, 2013:306.
    [10] LI R G. Existence of Solutions for Nonlinear Singular Fractional Differential Equations with Fractional Derivative Condition[J]. Advances in Difference Equations, 2014, 2014:292.
    [11] AGARWAL R P, O'REGAN D, STANEK S. Positive Solutions for Dirichlet Problems of Singular Nonlinear Fractional Differential Equation[J]. Journal of Mathematical Analysis and Applications, 2010, 371(1):57-68.
    [12] 刘芮琪, 吴行平, 唐春雷. 高维空间中一类奇异Kirchhoff型问题正解的存在性[J]. 西南大学学报(自然科学版), 2016, 38(4):67-71.
  • 加载中
计量
  • 文章访问数:  680
  • HTML全文浏览数:  535
  • PDF下载数:  111
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-12-17

一类分数阶奇异q差分方程边值问题解的存在性和唯一性

  • 山西大同大学 数学与统计学院, 山西 大同 037009

摘要: 主要讨论了一类奇异分数阶q-差分方程边值问题,其中控制函数含有分数阶q-导数.首先利用分数阶q-差分理论将该问题转化为等价的分数阶q-积分方程,得到了相关的格林函数;其次详细地证明了积分算子的全连续性,通过运用Schauder不动点定理和Banach不动点定理,证明了该边值问题解的存在性和唯一性,证明过程中,巧妙地应用了贝塔函数,使奇异问题得以解决;最后为了说明定理的有效性,给出了一个例子.

English Abstract

参考文献 (12)

目录

/

返回文章
返回