Banach空间上的有界算子的谱估计
Spectrum Estimate of Bounded Operator on Banach Space
-
摘要: 首先证明Banach空间上关于双线性泛函的Lax-Milgram定理的一个变化形式,然后利用此结果研究了Banach空间上的有界线性算子的谱估计,我们把以往关于Hilbert空间上的自共轭算子的一个谱定理推广到了Banach空间上.
-
关键词:
- Lax-Milgram定理 /
- 有界线性算子 /
- 谱
Abstract: We've firstly proved a variant of Lax-Milgram Theorem on bilinear functional on Banach space, then with this result, we've studied the spectrum estimate of bounded linear operator on Banach space, and we've generalized a classical spectrum theorem on the self-adjoint operator defined on Hilbert space to Banach space.-
Key words:
- Lax-Milgram Theorem /
- bounded linear operator /
- spectrum .
-
-
[1] BREZIS H. Functional Analysis, Sobolev Spaces and Partial Differential Equations[M]. New York:Springer, 2011. [2] CIARLET P G. Linear and Nonlinear Functional Analysis with Applications[M]. United States:SIAM, 2013. [3] CONWAY J B. A Course in Functional Analysis[M]. 2th ed. New York:Springer, 1990. [4] LAX P D, MILGRAM A N. Parabolic Equations[J]. Annals of Mathematics Studies, 1954, 33:167-190. [5] LIONS J L, STAMPACCHIA G. Variational Inequality[J]. Comm on Pure and Appl Math, 1967, 20:493-519. [6] RUDIN W. Functional Analysis[M]. New York:McGraw-Hill, 1973. [7] STEIN E, SHAKARCHI R. Functional Analysis[M]. Princeton:Princeton Univ Press, 2011. [8] 江泽坚, 孙善利. 泛函分析[M]. 2版. 北京:高等教育出版社, 2006. [9] 夏道行, 吴卓人, 严邵宗, 等. 实变函数论与泛函分析下册[M]. 2版. 北京:高等教育出版社, 1985. [10] 张恭庆, 林源渠. 泛函分析讲义上册[M]. 北京:北京大学出版社, 1987. -
计量
- 文章访问数: 825
- HTML全文浏览数: 663
- PDF下载数: 101
- 施引文献: 0