-
由于工农业生产中“三废”的不合理处理及金属矿山的开采,土壤中重金属离子不断累积,对环境和人民生命健康造成了很大的威胁[1].与传统的化学修复和物理修复相比,植物修复技术具有成本低、修复范围广、修复时效长的优点.植物修复的研究多为超富集植物,但目前发现的超富集植物多为草本,体内虽能富集高质量比的重金属,但生物量小,生长缓慢,耐性差,回收困难,所累积的重金属总量也非常有限[2-3].木本植物生物量巨大,生长迅速且根系庞大,因此具有很强的修复潜力[4].研究发现,木本植物中的杨树[5]、桉树[6]、柳树[7-8]、樟树[9]、紫穗槐[10]、松树[11]及栎属植物[12]等对重金属有极强的耐受和吸收能力,能在体内积累大量的重金属离子,因此在国内外已被广泛应用于植物修复实践中.寻求耐性好、富集能力强的乡土植物也成为了目前我国急需解决的问题.本研究采用盆栽试验对乡土植物复羽叶栾树进行Cd和Pb复合胁迫,研究复羽叶栾树对Cd和Pb的吸收和转运能力, 探索复羽叶栾树在重金属污染修复中的应用潜力.
全文HTML
-
将盆栽紫色土(采自西南大学农场)铺在塑料薄膜上晾干、压碎,并剔除植物根系及石块等异物.其基本理化性质见表 1.
复羽叶栾树种子采自西南大学校内,并于2017年3月播种,5月初挑选株高(33.2±2.1) cm和地径(7.8±1.6) mm基本一致的实生苗移栽到双层无纺布容器(直径40 cm,高25 cm)中,每袋11 kg土壤,每盆植3株,共60盆,180株. 2018年3月,用Cd Cl2·2.5H2O和(CH3COO)2Pb·3H2O(分析纯)配制成不同质量比的处理液各3 L,对照组为蒸馏水3 L,向土壤分3次均匀浇灌.容器底部用黑色厚塑料袋套住,防止重金属溶液从盆底流出.
-
根据西南地区土壤Cd和Pb的污染状况调查中已出现的最大质量比[13],并考虑到污染有可能增加的可能,研究中对重金属质量比的上限作适当延伸,同时结合《土壤环境质量农用地土壤污染风险管控标准》(GB15618-2018)中的农用地土壤污染风险筛选值和农用地土壤污染风险管制值进行重金属土壤质量比梯度划分,土壤(干质量)Cd质量比为:1(A1),10(A2),50(A3) mg/kg;Pb质量比为:500(B1),1 000(B2),2 000(B3)mg/kg;进行Cd和Pb二因子正交,对照CK(不加外源Cd和Pb),每个处理组重复6次,详见表 2.
-
重金属胁迫处理40 d后,采集植株叶片进行叶绿素和MDA(丙二醛)含量测定[14].经胁迫处理100 d后收获,采集植物样品,用自来水反复冲洗干净后再用去离子水反复冲洗并吸干水分.将植物样品分为根、茎、叶三部分,经105 ℃杀青2 h,80 ℃烘干至恒质量,称量并用不锈钢粉碎机粉碎后过60目尼龙筛备用.
土壤理化指标采用土壤农化常规分析方法[15].土壤样品用HNO3-HF-HClO4三酸消化法消解[16].植物样品用GB/T5009规定的HNO3-HCLO4混合酸消化法消解,Cd和Pb质量比用日立Z-5000原子吸收光谱仪测定,供试试剂均为分析纯,试验器皿在使用前均用10%硝酸溶液浸泡24 h以上.
-
数据采用Microsoft Excel 2016和SPSS 22.0进行统计分析、作图等.生物富集系数和转运系数分别为:
kBCFR=C地下部分/C生长介质 kBCFS=C地上部分/C生长介质 kTF=C地上部分/C地下部分
1.1. 试验材料
1.2. 试验设计
1.3. 测定方法
1.4. 数据处理
-
数据显示,在轻度Pb污染(B1)时,复羽叶栾树叶片内的叶绿素质量比和MDA摩尔质量比与对照差异不具有统计学意义,A1B1和A2B1生物量显著高于CK(P<0.05)(表 3),表明复羽叶栾树对Cd的耐性较强.
即使在土壤低Cd(A1)时,中高质量比Pb(B2-B3)也会使复羽叶栾树的植株出现矮化失绿的现象,叶片MDA摩尔质量比显著高于CK,叶绿素质量比和生物量下降显著(P<0.05).表明复羽叶栾树对Pb比较敏感.
-
与CK相比,复羽叶栾树根、茎和叶中的Cd质量比均随土壤Cd胁迫质量比的增加而显著升高(P<0.05)(表 4).通常植物对重金属的吸收具有就近积累效应[17],即重金属质量比从高到低顺序为根、茎、叶,但在复羽叶栾树中其排序为根、叶、茎,表明Cd元素从其茎转移到叶的能力较强.
与CK相比,复羽叶栾树根茎中的Pb质量比均随着土壤中Pb胁迫质量比的增加而显著升高(P<0.05),但叶片中Pb增加不显著,表明Pb在复羽叶栾树体内的移动性较差.复羽叶栾树对Pb吸收表现出就近积累的特性,及其体内Pb质量比从高到低依次为根、茎、叶.
复羽叶栾树体内Cd和Pb质量比(干质量)分别可达到68.04 mg/kg和4 858.1 mg/kg.据资料,杂交杨(干质量)中Cd质量比最高可达209 mg/kg [18]. Hammer等发现,在Cd和Zn轻度污染的土壤进行5a的修复试验后,蒿柳(Salix viminalis L.)于同等条件下超过Cd超积累植物油菜(Brassica napus L.)等草本植物[19];Jensen等发现,即使在Cd,Zn,Pb和Cu严重污染的情况下,蒿柳依旧能有效从土壤中转运、积累重金属,只是生物量与轻度污染土壤情况相比有所下降[20].因此,相比草本超富集植物,木本植物表现出更强的实际可应用性.
-
由表 5可知,随着土壤Cd质量比的增加,复羽叶栾树单株Cd累积量相应增大,处理组与CK,各组间差异均具有统计学意义.在A3B1组,单株Cd积累量达到最大,为0.468 mg/株.随着土壤Pb质量比的增大,植株对Cd的总累积量呈下降趋势. Pb会抑制整株植物对重金属Cd的累积量.
随着土壤Pb质量比的增加,复羽叶栾树单株Pb累积量相应增大,处理组与CK,组间差异均具有统计学意义.在A2B3组,单株Pb积累量(干质量)达到最大值,为35.495 mg/株,随着土壤Cd质量比的增大,植株对Pb的总累积量呈先升高后下降趋势.低质量比Cd促进植株Pb累积,而高质量比的Cd会抑制Pb累积.本试验显示土壤中Pb会使复羽叶栾树生长受阻,从而抑制植株对Cd的富集.低质量比Cd会增加复羽叶栾树生物量从而对植株Pb总累积量有促进作用.
-
为揭示土壤Cd和Pb复合污染对复羽叶栾树各器官吸收Cd和Pb的影响规律,以土壤中Cd和Pb质量比为自变量X1和X2,植物不同器官中相应元素质量比为因变量Y(根为YR,茎为YS,叶为YL,平均值为YA),进行二元线性回归分析(表 6).复羽叶栾树不同器官中Cd和Pb质量比与土壤中Cd与Pb质量比的相关性大部分具有统计学意义(P<0.05).回归分析表明,在Cd和Pb复合污染条件下,复羽叶栾树对Cd的吸收主要受土壤Cd质量比的影响,对Pb的吸收主要受土壤Pb质量比的影响.但叶片内Pb质量比受土壤Pb质量比影响较小.说明Pb在复羽叶栾树体内移动性差.
-
在Cd和Pb复合胁迫下,复羽叶栾树Cd富集系数基本大于Pb(图 1),表明复羽叶栾树对Cd的吸收累积能力大于Pb,Cd更容易被植物吸收. A1B1处理复羽叶栾树地上和地下部分对Cd的富集系数均最大,分别为3.215和0.544. A2B3处理,根系对Pb的富集最大,为2.293.王广林[21]提出木本植物地上部分富集系数大于0.4,即可认为该植物的修复能力强,富集系数在0.1~0.4时,即可认为该植物对土壤重金属污染有一定的修复能力.据此认为复羽叶栾树在轻度Cd和Pb污染下栾树富集能力较强.
复羽叶栾树对Cd和Pb的转运系数均小于1(Cd为0.095~0.230,Pb为0.036~0.353).说明Cd和Pb在复羽叶栾树地上部分的转运能力低,根系固定能力较强.
2.1. Cd和Pb复合胁迫对复羽叶栾树生理生长的影响
2.2. 复合胁迫下复羽叶栾树对Cd和Pb的吸收
2.3. Cd和Pb复合污染对复羽叶栾树Cd和Pb累积量的影响
2.4. 复合条件下Cd和Pb质量比对复羽叶栾树各器官重金属质量比的影响
2.5. 复羽叶栾树对Cd和Pb的富集与转运
-
1) 复羽叶栾树对Cd和Pb具有较强的耐性,对Cd耐性强于Pb.
2) 复羽叶栾树在A3B1组,单株Cd累积量最大,为0.468 mg/株. A2B3组,Pb积累量最大,为35.495 mg/株. Cd和Pb更容易积累在根部,表现出较强的固定作用.土壤中Pb会抑制整株植物对Cd的累积;土壤低质量比Cd促进植株Pb累积,高质量比Cd抑制整株植物Pb累积.
3) 复羽叶栾树对Cd的吸收能力和迁移能力均大于Pb.复羽叶栾树不属于超富集植物,但生物富集系数较高,对土壤Cd和Pb离子有较高的累积能力,且相较于Pb,对Cd的吸收累积效果更强.
复羽叶栾树还具有耐贫瘠,根系发达,生物量大,对Cd和Pb耐性强等优势.对重金属污染土壤具有较强的修复能力,可以为重金属污染土壤的植物修复提供了新的资源选择,也可考虑将复羽叶栾树与其他具有超积累的植物套作,达到协同治理土壤的目的.