留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

缓释复合肥减钾施用对菜地土壤微生物效应研究

上一篇

下一篇

王菲, 袁婷, 王正银. 缓释复合肥减钾施用对菜地土壤微生物效应研究[J]. 西南大学学报(自然科学版), 2020, 42(11): 77-85. doi: 10.13718/j.cnki.xdzk.2020.11.009
引用本文: 王菲, 袁婷, 王正银. 缓释复合肥减钾施用对菜地土壤微生物效应研究[J]. 西南大学学报(自然科学版), 2020, 42(11): 77-85. doi: 10.13718/j.cnki.xdzk.2020.11.009
WANG Fei, YUAN Ting, WANG Zheng-yin. Effects of Potash Reductions with Slow Release Fertilizer on Rhizosphere Soil Microbes of Vegetable Fields[J]. Journal of Southwest University Natural Science Edition, 2020, 42(11): 77-85. doi: 10.13718/j.cnki.xdzk.2020.11.009
Citation: WANG Fei, YUAN Ting, WANG Zheng-yin. Effects of Potash Reductions with Slow Release Fertilizer on Rhizosphere Soil Microbes of Vegetable Fields[J]. Journal of Southwest University Natural Science Edition, 2020, 42(11): 77-85. doi: 10.13718/j.cnki.xdzk.2020.11.009

缓释复合肥减钾施用对菜地土壤微生物效应研究

  • 基金项目: 国家公益性行业(农业)科研专项经费项目(201503013-5)
详细信息
    作者简介:

    王菲(1986-),女,博士,讲师,主要从事植物营养与品质研究 .

    通讯作者: 王正银,教授,博士研究生导师
  • 中图分类号: S145

Effects of Potash Reductions with Slow Release Fertilizer on Rhizosphere Soil Microbes of Vegetable Fields

  • 摘要: 在我国钾肥主要依赖进口的背景下,利用缓控释技术减钾施用对农业可持续发展具有重要意义.在高氮钾和低氮钾紫色土试验点(铜梁和北碚试验点)设置缓释复合肥减钾10%和30%(SRF1和SRF2),观察对3种叶类蔬菜(白菜、瓢儿白和生菜)土壤微生物的影响.结果表明,2个试验点低氮钾土壤的微生物量明显高于高氮钾土壤.高氮钾水平不同叶菜土壤细菌、放线菌、真菌以瓢儿白土壤含量最高. SRF1较CF(化肥)显著增加高氮钾水平下白菜、瓢儿白、生菜土壤细菌,增幅分别为11.5%,27.7%,22.2%.低氮钾水平生菜土壤放线菌SRF1较CF显著增加18.0%,较CCF(普通复合肥)显著增加16.4%.高氮钾水平SRF1白菜土壤真菌显著高于CF,增幅分别为13.4%和12.9%.高氮钾水平白菜、瓢儿白、生菜土壤革兰氏阳性菌和革兰氏阴性菌含量以缓释复合肥最高.不同施肥处理对土壤微生物群落结构的影响以缓释复合肥减量10%处理(SRF1)施用效果最好,可实现缓释复合肥在叶类蔬菜栽培中的减钾施用方式.
  • 加载中
  • 表 1  不同叶类蔬菜土壤细菌

    试验地点 处理 白菜/(nmol·g-1) 瓢儿白/(nmol·g-1) 生菜/(nmol·g-1)
    高氮钾土壤 CF 3.64±0.07 b 4.99±1.04 c 4.10±0.28 b
    CCF 3.75±1.03 b 5.48±0.04 b 4.44±0.30 b
    SRF1 4.06±0.09 a 6.37±1.06 a 5.01±1.06 a
    SRF2 3.90±0.07 ab 5.50±0.09 b 4.58±0.39 b
    低氮钾土壤 CF 7.52±0.08 b 6.93±0.10 b 6.86±1.96 a
    CCF 6.55±0.21 c 6.62±0.18 b 7.12±2.00 a
    SRF1 8.51±0.15 a 7.16±0.16 b 7.70±2.10 a
    SRF2 7.55±0.05 b 8.39±0.10 a 7.38±1.92 a
    下载: 导出CSV

    表 2  不同叶类蔬菜土壤放线菌

    试验地点 处理 白菜/(nmol·g-1) 瓢儿白/(nmol·g-1) 生菜/(nmol·g-1)
    高氮钾土壤 CF 0.211±0.04 b 0.430±1.02 a 0.229±0.79 b
    CCF 0.216±0.09 b 0.410±0.07 a 0.222±0.95 b
    SRF1 0.203±0.05 c 0.450±1.01 a 0.336±1.00 a
    SRF2 0.281±0.03 a 0.368±0.01 b 0.220±0.84 b
    低氮钾土壤 CF 0.609±0.03 b 0.574±0.10 b 0.529±0.10 c
    CCF 0.448±0.20 d 0.516±0.44 c 0.536±0.57 c
    SRF1 0.678±0.12 a 0.515±0.01 c 0.624±0.96 a
    SRF2 0.588±0.14 c 0.606±0.09 a 0.582±0.85 b
    下载: 导出CSV

    表 3  不同叶类蔬菜土壤真菌

    试验地点 处理 白菜/(nmol·g-1) 瓢儿白/(nmol·g-1) 生菜/(nmol·g-1)
    高氮钾土壤 CF 0.433±0.06 c 0.635±0.01 d 0.648±0.00 c
    CCF 0.535±0.02 a 0.877±0.06 a 0.507±0.09 d
    SRF1 0.491±0.08 b 0.788±0.08 b 0.717±0.08 b
    SRF2 0.489±0.12 b 0.741±0.04 c 0.815±0.12 a
    低氮钾土壤 CF 1.05±0.08 c 1.22±0.18 b 1.29±0.60 c
    CCF 0.922±0.03 d 0.981±0.11 d 1.02±0.55 d
    SRF1 1.48±0.21 a 1.11±0.23 c 1.43±0.58 b
    SRF2 1.20±0.10 b 1.48±0.30 a 1.60±0.63 a
    下载: 导出CSV

    表 4  不同叶类蔬菜土壤革兰氏阳性菌和革兰氏阴性菌

    叶菜种类 处理 高氮钾土壤 低氮钾土壤
    革兰氏阳性菌/ (nmol·g-1) 革兰氏阴性菌/ (nmol·g-1) 革兰氏阳性菌/ (nmol·g-1) 革兰氏阴性菌/ (nmol·g-1)
    白菜 CF 2.12±0.17b 1.75±0.04b 3.79±0.21b 4.08±0.18c
    CCF 2.20±0.02b 1.68±0.23b 3.58±0.19c 3.39±0.20d
    SRF1 2.25±0.15ab 1.93±0.05a 4.19±0.10a 5.28±0.24a
    SRF2 2.36±0.07a 2.00±0.11a 3.79±0.13b 4.64±0.20b
    瓢儿白 CF 2.85±0.25d 2.21±0.15c 3.57±0.16c 4.24±0.30b
    CCF 3.08±0.24c 2.51±0.14b 3.60±0.24c 3.34±0.30d
    SRF1 3.82±0.23a 3.08±0.23a 3.86±0.28b 3.95±0.29c
    SRF2 3.48±0.22b 2.98±0.10a 4.38±0.30a 5.22±0.33a
    生菜 CF 2.78±0.10b 2.03±0.19b 3.60±0.22b 5.06±0.10b
    CCF 2.56±0.12c 1.73±0.16c 3.41±0.20b 3.52±0.21c
    SRF1 3.02±0.23a 2.31±0.23a 3.94±0.23a 5.32±0.11a
    SRF2 2.76±0.20b 2.42±0.14a 3.58±0.12b 5.52±0.21a
    下载: 导出CSV

    表 5  土壤微生物种群特征值

    叶菜种类 处理 高氮钾土壤 低氮钾土壤
    多样性指数 均匀度指数 丰富度指数 多样性指数 均匀度指数 丰富度指数
    白菜 CF 2.64±0.01b 0.881±0.00a 4.02±0.03b 3.60±0.02ab 0.771±0.05a 4.00±0.02b
    CCF 2.70±0.02a 0.839±0.01b 3.56±0.01c 2.71±0.02c 0.729±0.11b 3.76±0.02c
    SRF1 2.71±0.04a 0.854±0.01b 5.51±0.11a 3.71±0.01a 0.754±0.10a 4.51±0.07a
    SRF2 2.69±0.10b 0.789±0.08c 5.50±0.01a 3.69±0.10a 0.719±0.02b 4.55±0.01a
    瓢儿白 CF 2.14±0.02b 0.781±0.00d 4.00±0.04c 2.61±0.01c 0.781±0.05bc 5.02±0.09b
    CCF 2.00±0.18b 0.819±0.01c 4.16±0.02b 3.71±0.02a 0.809±0.02a 5.16±0.17a
    SRF1 2.21±0.01a 0.854±0.00b 4.51±0.01a 3.71±0.00a 0.824±0.18a 5.11±0.02a
    SRF2 2.19±0.10a 0.889±0.08a 4.50±0.01a 3.39±0.10b 0.799±0.02ab 5.00±0.11b
    生菜 CF 2.04±0.01b 0.811±0.01a 3.02±0.10b 2.14±0.01c 0.881±0.02a 4.02±0.11c
    CCF 2.10±0.02ab 0.819±0.21a 3.56±0.11a 3.70±0.02a 0.739±0.11d 5.46±0.05a
    SRF1 2.11±0.00a 0.754±0.02c 3.57±0.08a 3.74±0.00a 0.754±0.05c 5.51±0.09a
    SRF2 2.19±0.10a 0.790±0.04b 3.54±0.09a 2.89±0.10b 0.789±0.02b 5.30±0.01b
    下载: 导出CSV

    表 6  不同施肥处理叶类蔬菜产量

    试验地点 处理 白菜/(kg·hm-2) 瓢儿白/(kg·hm-2) 生菜/(kg·hm-2)
    高氮钾土壤 CF 44 817±435b 37 635±145a 25 575±508b
    CCF 48 195±443a 39 435±290a 28 005±561a
    SRF1 47 115±405a 39 015±184a 27 735±609a
    SRF2 45 390±798ab 38 370±167a 26 730±458ab
    低氮钾土壤 CF 42 270±255b 33 300±167b 27 560±429c
    CCF 44 610±419a 35 805±347a 30 630±482a
    SRF1 44 100±631ab 34 695±255ab 29 310±368ab
    SRF2 43 170±419ab 34 005±255b 28 620±457bc
    下载: 导出CSV

    表 7  土壤微生物与蔬菜产量相关性分析

    叶菜种类 细菌 放线菌 真菌 革兰氏阳性菌 革兰氏阴性菌
    白菜 -0.760* -0.804* 0.074 -0.762* -0.749*
    瓢儿白 -0.773* -0.904** -0.828* -0.551 -0.834*
    生菜 0.759* 0.719* 0.468 0.598 0.479
    下载: 导出CSV
  • [1] ALI M, BAKHT J, KHAN G D. Effect of Water Deficiency and Potassium Application on Plant Growth, Osmolytes and Grain Yield of Brassica Napus Cultivars [J]. Acta Botanica Croatica, 2014, 73(2): 299-314. doi: 10.2478/botcro-2014-0016
    [2] 金珂旭, 王正银, 樊驰, 等.不同钾肥对甘蓝产量、品质和营养元素形态的影响[J].土壤学报, 2014, 51(6): 1369-1377. doi: http://www.cnki.com.cn/Article/CJFDTotal-TRXB201406022.htm
    [3] 余顺慧, 蒙明珠, 潘杰.氮肥和钾肥对铬污染土壤延胡索幼苗生长及品质的影响[J].西南师范大学学报(自然科学版), 2017, 42(10): 61-67. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201710012.htm
    [4] TAN D S, JIN J Y, JIANG L H, et al. Potassium Assessment of Grain Producing Soils in North China [J]. Agriculture, Ecosystems and Environment, 2012, 148: 65-71. doi: 10.1016/j.agee.2011.11.016
    [5] 王振振, 张超, 史春余, 等.腐植酸缓释钾肥对土壤钾素含量和甘薯吸收利用的影响[J].植物营养与肥料学报, 2012, 18(1): 249-255. doi: http://qikan.cqvip.com/Qikan/Article/Detail?id=40590783
    [6] 张务帅, 陈宝成, 李成亮, 等.控释氮肥控释钾肥不同配比对小麦生长及土壤肥力的影响[J].水土保持学报, 2015, 29(3): 178-183, 189. doi: http://www.cnki.com.cn/Article/CJFDTotal-TRQS201503033.htm
    [7] YANG X Y, LI C L, ZHANG Q, et al. Effects of Polymer-coated Potassium Chloride on Cotton Yield, Leaf Senescence and Soil Potassium [J]. Field Crops Research, 2017, 212: 145-152. doi: 10.1016/j.fcr.2017.07.019
    [8] OSCAR U, JAVIER E, VINICIUS Z A, et al. New Amphiphilic Composite for Preparing Efficient Coated Potassium-fertilizers for Top-dressing Fertilization of Annual Crops [J]. Journal of Agricultural and Food Chemistry, 2018, 66(19): 4787-4799. doi: 10.1021/acs.jafc.7b04596
    [9] 袁婷, 王正银, 谷守宽, 等.低钾配施纳米氢氧化镁对白菜的营养效应研究[J].植物营养与肥料学报, 2017, 23(1): 254-261. doi: http://d.wanfangdata.com.cn/Periodical/zwyyyflxb201701030
    [10] 柳开楼, 黄晶, 张会民, 等.长期施肥对红壤旱地团聚体特性及不同组分钾素分配的影响[J].土壤学报, 2018, 55(2): 443-454. doi: http://www.cnki.com.cn/Article/CJFDTotal-TRXB201802018.htm
    [11] 张晴, 张思悦, 李凌.有机物料改良紫色土对越橘生长发育的影响[J].西南大学学报(自然科学版), 2018, 40(9): 1-8. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2018.09.004
    [12] 王正银, 叶学见, 叶进, 等.绿色控释多养分肥料生产方法: CN1559996 [P]. 2005-01-05.
    [13] BEI S K, ZHANG Y L, Li T T, et al. Response of the Soil Microbial Community to Different Fertilizer Inputs in a Wheat-maize Rotation on a Calcareous Soil [J]. Agriculture, Ecosystems and Environment, 2018, 260: 58-69. doi: 10.1016/j.agee.2018.03.014
    [14] CUTLER N A, CHAPUT D L, VAN DER GAST C J. Long-term Changes in Soil Microbial Communities During Primary Succession [J]. Soil Biology and Biochemistry, 2014, 69: 359-370. doi: 10.1016/j.soilbio.2013.11.022
    [15] 王菲, 袁婷, 谷守宽, 等.有机无机缓释复合肥对不同土壤微生物群落结构的影响[J].环境科学, 2015, 36(4): 1461-1467. doi: http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201504051.htm
    [16] 曾希柏, 王亚男, 王玉忠, 等.不同施肥模式对设施菜地细菌群落结构及丰度的影响[J].中国农业科学, 2013, 46(1): 69-79. doi: http://d.wanfangdata.com.cn/periodical/zgnykx201301009
    [17] MONTALBA R, ARRIAGADA C, ALVEAR M, et al. Effects of Conventional and Organic Nitrogen Fertilizers on Soil Microbial Activity, Mycorrhizal Colonization, Leaf Antioxidant Content, and Fusarium Wilt in Highbush Blueberry (Vaccinium Corybosum L.) [J]. Scientia Horticulturae, 2010, 125(4): 775-778. doi: 10.1016/j.scienta.2010.04.046
    [18] SICILIANO S D, PALMER A S, WINSLEY T, et al. Soil Fertility is Associated with Fungal and Bacterial Richness, Whereas PH is Associated with Community Composition in Polar Soil Microbial Communities [J]. Soil Biology and Biochemistry, 2014, 78: 10-20. doi: 10.1016/j.soilbio.2014.07.005
    [19] 陈益, 王正银, 李振轮, 等.不同钾水平对白菜产量和钾肥效率的影响[J].磷肥与复肥, 2015, 30(5): 48-50. doi: http://d.wanfangdata.com.cn/Periodical/lfyff201505018
    [20] VESTAL J R, WHITE D C. Lipid Analysis in Microbial Ecology: Quantitative Approaches to the Study of Microbial Communities [J]. Bioscience, 1989, 39(8): 535-541. doi: 10.2307/1310976
    [21] FROSTEGARD A, BAATH E, TUNLID A. Shifts in the Structure of Soil Microbial Communities in Limed Forests as Revealed by Phospholipid Fatty Acid Analysis [J]. Soil Biology and Biochemistry, 1993, 25(6): 723-730. doi: 10.1016/0038-0717(93)90113-P
    [22] KIMURA M, ASAKAWA S. Comparison of Community Structures of Microbiota at Main Habitats in Rice Field Ecosystems Based on Phospholipid Fatty Acid Analysis [J]. Biology and Fertility of Soils, 2006, 43(1). 20-29. doi: 10.1007/s00374-005-0057-2
    [23] doi: http://europepmc.org/abstract/AGR/IND44306170 DJUKIC I, ZEHETNER F, MENTLER A, et al. Microbial Community Composition and Activity in Different Alpine Vegetation Zones [J]. Soil Biology and Biochemistry, 2010, 42(2): 155-161.
    [24] 毕明丽, 宇万太, 姜子绍, 等.利用PLFA方法研究不同土地利用方式对潮棕壤微生物群落结构的影响[J].中国农业科学, 2010, 43(9): 1834-1842. doi: http://d.wanfangdata.com.cn/periodical/zgnykx201009009
    [25] LAZCANO C, GÓMEA-BRANDÓN M, REVILLA P, et al. Short-term Effects of Organic and Inorganic Fertilizers on Soil Microbial Community Structure and Function [J]. Biology and Fertility of Soils, 2013, 49(6): 723-733. doi: 10.1007/s00374-012-0761-7
    [26] LI C X, MA S C, SHAO Y, et al. Effects of Long-term Organic Fertilization on Soil Microbiologic Characteristics, Yield and Sustainable Production of Winter Wheat [J]. Journal of Integrative Agriculture, 2018, 17(1): 210-219. doi: 10.1016/S2095-3119(17)61740-4
    [27] STARK C H, CONDRON L M, O'CALLAGHAN M, et al. Differences in Soil Enzyme Activities, Microbial Community Structure and Short-term Nitrogen Mineralisation Resulting from Farm Management History and Organic Matter Amendments [J]. Soil Biology and Biochemistry, 2008, 40(6): 1352-1363. doi: 10.1016/j.soilbio.2007.09.025
    [28] 胡小凤, 李文一, 王正银.缓释复合肥料对酸性菜园土壤微生物数量特征的影响[J].农业环境科学学报, 2011, 30(8): 1594-1601. doi: http://www.cnki.com.cn/Article/CJFDTotal-NHBH201108021.htm
    [29] 张恩平, 田悦悦, 李猛, 等.长期不同施肥对番茄根际土壤微生物功能多样性的影响[J].生态学报, 2018, 38(14): 5027-5036. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201814011
    [30] 高玉峰, 贺字典.影响土壤真菌多样性的土壤因素[J].中国农学通报, 2010, 26(10): 177-181. doi: http://d.wanfangdata.com.cn/Periodical/zgnxtb201010038
    [31] YANG X Y, GENG J B, LI C L, et al. Combined Application of Polymer Coated Potassium Chloride and Urea Improved Fertilizer Use Efficiencies, Yield and Leaf Photosynthesis of Cotton on Saline Soil [J]. Field Crops Research, 2016, 197: 63-73. doi: 10.1016/j.fcr.2016.08.009
    [32] REINHOLD-HUREK B, BVNGER W, BURBANO C S, et al. Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity [J]. Annual Review of Phytopathology, 2015, 53(1): 403-424. doi: 10.1146/annurev-phyto-082712-102342
    [33] OFEK-LALZAR M, SELA N, GOLDMAN-VORONOV M, et al. Niche and Host-associated Functional Signatures of the Root Surface Microbiome [J]. Nature Communications, 2014, 5: 4950. doi: 10.1038/ncomms5950
    [34] KAPLAN L, TLUSTOŠ P, SZAKOVA J, et al. the Effect of NPK Fertilizer with Different Nitrogen Solubility on Growth, Nutrient Uptake and Use by Chrysanthemum [J]. Journal of Plant Nutrition, 2016, 39(7): 993-1000. doi: 10.1080/01904167.2015.1106559
  • 加载中
表( 7)
计量
  • 文章访问数:  670
  • HTML全文浏览数:  670
  • PDF下载数:  130
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-15
  • 刊出日期:  2020-11-20

缓释复合肥减钾施用对菜地土壤微生物效应研究

    通讯作者: 王正银,教授,博士研究生导师
    作者简介: 王菲(1986-),女,博士,讲师,主要从事植物营养与品质研究
  • 1. 西南大学 资源环境学院,重庆 400715
  • 2. 重庆工业职业技术学院,重庆 401120
基金项目:  国家公益性行业(农业)科研专项经费项目(201503013-5)

摘要: 在我国钾肥主要依赖进口的背景下,利用缓控释技术减钾施用对农业可持续发展具有重要意义.在高氮钾和低氮钾紫色土试验点(铜梁和北碚试验点)设置缓释复合肥减钾10%和30%(SRF1和SRF2),观察对3种叶类蔬菜(白菜、瓢儿白和生菜)土壤微生物的影响.结果表明,2个试验点低氮钾土壤的微生物量明显高于高氮钾土壤.高氮钾水平不同叶菜土壤细菌、放线菌、真菌以瓢儿白土壤含量最高. SRF1较CF(化肥)显著增加高氮钾水平下白菜、瓢儿白、生菜土壤细菌,增幅分别为11.5%,27.7%,22.2%.低氮钾水平生菜土壤放线菌SRF1较CF显著增加18.0%,较CCF(普通复合肥)显著增加16.4%.高氮钾水平SRF1白菜土壤真菌显著高于CF,增幅分别为13.4%和12.9%.高氮钾水平白菜、瓢儿白、生菜土壤革兰氏阳性菌和革兰氏阴性菌含量以缓释复合肥最高.不同施肥处理对土壤微生物群落结构的影响以缓释复合肥减量10%处理(SRF1)施用效果最好,可实现缓释复合肥在叶类蔬菜栽培中的减钾施用方式.

English Abstract

  • 钾作为植物营养三要素,在植物体内具有激活酶,促进叶绿素的合成和光合作用,调节植物碳、氮代谢过程,进而改善作物品质[1-3].现代农业中施用钾肥已成为作物高产优质高效的重要措施.但我国化学钾肥资源不足,自给率较低,主要依赖进口,并随着钾肥用量、价格增加,钾肥已成为限制农业持续发展的重要问题[4].因此,提高化学钾肥利用效率、降低生产成本、发展优质农业已成为近年来肥料科学研究的热点,探索钾肥高效利用新途径也成为不少研究者的追求目标.田间条件下土壤速效钾质量分数的消长主要受外界肥料的供给、土壤中缓效钾的转化以及植物对钾素的吸收利用3个方面的影响[5].缓控释肥具有肥效长、养分利用率高、环境污染小等特点,若从缓控释钾肥缓慢释放养分特性能长期保持土壤中养分离子的数量和活性,增加植物可吸收利用的钾量出发[6],结合缓控释技术提高钾素利用率,可实现钾肥低成本施用.目前,已有一些利用缓控释技术、配施增效剂等途径提高钾肥高效利用的研究报道[7-9],但针对钾肥减量对土壤微生物、土壤肥力以及对蔬菜生长等方面的影响研究鲜有报道.有研究表明有机肥会显著影响团聚体组分中的非交换性钾和交换性钾含量,进而提高土壤团聚体组分钾素的供应能力[10-11].本研究以西南大学研制的一种快速有效化处理的优质有机肥为基础,与经缓释技术处理的化学肥料复合而制得养分结构型非包膜肥料,该肥料含有机质和多种氮素形态[12],除了对钾素有缓释作用外,还因含有机质,可提高土壤对钾素的吸附能力.所以开展缓释复合肥减钾量的研究在当前钾肥资源不足的背景下具有重要意义.

    土壤微生物在土壤肥力、植物营养以及物质循环中具有重要作用,是土壤有机质和养分转化与循环的动力,有利于土壤肥力的提高[13-14].土壤微生物的数量、组成与活性以及群落结构等会受到土壤酸碱性、有机质和化学性质以及农业措施等的影响[15-16].施肥会影响土壤微域环境,进而影响土壤微生物数量、活性、丰富度、均匀度以及群落结构[17-18].不同肥料以及施用量对土壤微生物影响不同.因此,在维持作物高产稳产前提下,本研究选择不同氮钾水平土壤,设置缓释复合肥减钾10%和30%,观察对我国南方地区广泛栽培和食用的叶类蔬菜(白菜、瓢儿白、生菜)土壤根区微生物(细菌、放线菌、真菌、革兰氏阳性菌、革兰氏阴性菌)的影响,旨在为蔬菜稳产保质前提下高效利用钾肥提供理论依据.

  • 供试土壤:重庆市铜梁区土桥镇新桥村(29°48′ N,105°58′ E)和北碚区柳荫镇麻柳河村(29°57′ N,106°36′ E)蔬菜种植基地,均为侏罗纪遂宁组母质发育的红棕紫泥土.高氮钾土壤(铜梁试验点)pH值7.65,有机质43.2 g/kg,碱解氮206 mg/kg,有效磷77.4 mg/kg,速效钾185 mg/kg;低氮钾土壤(北碚试验点)pH值7.62,有机质39.4 g/kg,碱解氮152 mg/kg,有效磷91.5 mg/kg,速效钾91.7 mg/kg.

    供试作物:白菜(三角早熟五号)、瓢儿白(特矮青)、生菜(意大利白结球),均由重庆市农业科学院提供.

    供试肥料:尿素(N,46%),磷酸二氢铵(N,11%;P2O5,44%),氯化钾(K2O,60%),普通复合肥(N,33%;P2O5,33%;K2O,33%),缓释复合肥氮磷钾比例为7%,9%和14%,有机质比例为15.7%[12].

  • 设置4个施肥处理:化肥(chemical fertilizer,CF)处理,即尿素、氯化钾和磷酸二氢铵;普通复合肥(common compound fertilizer,CCF)处理;缓释复合肥减钾10%和30%(slow-release compound fertilizer,SRF1 and SRF2)2个处理. CF和CCF处理氮磷钾(N-P2O5-K2O)施用量一致,均为225,75,150 kg/hm2,缓释复合肥(SRF1和SRF2)处理氮磷施用量与化肥处理一致,钾施用量分别为135,105 kg/hm2,减钾量参考该课题前期研究结果而定[2, 19].其中普通复合肥处理通过适量补充尿素和氯化钾调整,缓释复合肥减钾处理养分用量以钾素为基础补充尿素.化肥处理中磷酸二氢铵、氯化钾作基肥,尿素按当地农户常规施肥的40%(基施)、30%(追施)和30%(追施)的方式施用.普通复合肥和缓释复合肥作基肥,其中补充的尿素在叶菜莲坐期和开盘期平均分2次追施.各处理3次重复,随机区组排列,小区面积为6.9 m2.选取生长一致的蔬菜幼苗进行移栽,栽培规格(行距×株距):白菜为0.30 m×0.25 m、瓢儿白为0.15 m×0.10 m、生菜为0.25 m×0.20 m.

    试验于2016年8月至2017年1月进行,采收期采集叶菜根区土壤样品(0~20 cm土层),每个处理采集多个蔬菜根区土壤,均匀混合,除去土样中的石砾、残根等杂质后,过2 mm筛,用无菌塑料袋装入样品,在低温下(-70 ℃)冷冻保存,便于后期土壤磷脂脂肪酸(Phospholipid Fatty Acid,PLFA)的测定.

  • 土壤微生物用Agilent 6850气相色谱仪(FID检测器)分析磷脂脂肪酸成分.按照下式计算PLFA

    式中:PPLFA为样品的峰值面积;POSTD为标准品的峰值面积;S为外标标准物质的浓度(ng/μL);V为样品的测定体积(μL);R为分取倍数;D为稀释倍数;W为土壤样品的烘干质量(g).

    经查阅相关文献[20-23],各标记性脂肪酸分别有细菌(12:0,13:0,14:0,i14:0,15:0,i15:0,a15:0,16:0,i16:0,16:1 2OH,16:1w5c等),革兰氏阳性细菌(i14:0,i15:0,a15:0,i16:0,i17:0,a17:0等),革兰氏阴性细菌(16:1w5c,cy17:0,cy19:0w8c等),真菌(18:1w9c等),放线菌(10Me17:0,10Me18:0等).

  • 试验数据用Microsoft Excel 2003和SPSS 13.0进行数据处理与分析,差异统计学分析采用Duncan法.

  • 高氮钾水平白菜土壤细菌以SRF1最高,且显著高于CF和CCF,增幅分别为11.5%和8.3%(表 1).瓢儿白和生菜土壤细菌以SRF1处理最高,且显著高于CF,CCF,SRF2.高氮钾水平不同叶菜土壤细菌整体上存在差异(从高到低依次为瓢儿白、生菜、白菜),可见,栽培作物对土壤细菌有一定的影响.

    低氮钾水平不同叶菜土壤细菌质量摩尔浓度整体上高于高氮钾土壤,这可能是2个试验点土壤钾水平不同所致.在低氮钾土壤,SRF1较CF和CCF显著增加白菜土壤细菌质量摩尔浓度,增幅分别为13.2%和29.9%(表 1).瓢儿白土壤细菌以缓释复合肥高于化肥和普通复合肥,SRF2最高,其次是SRF1.不同处理间生菜土壤细菌差异无统计学意义,但仍以SRF1最高.低氮钾水平不同叶菜土壤细菌差异不大,原因有待进一步研究.

  • 高氮钾水平瓢儿白土壤放线菌质量摩尔浓度高于白菜和生菜土壤.在高氮钾土壤中,SRF1处理瓢儿白土壤放线菌虽与CF和CCF差异无统计学意义,但仍以SRF1最高.生菜土壤放线菌SRF1处理显著高于CF和CCF,增幅分别为46.7%和51.4%(表 2).

    低氮钾水平叶菜土壤放线菌高于高氮钾土壤.在低氮钾紫色土,SRF1较CF和CCF显著增加白菜土壤放线菌,增幅分别为11.3%和51.3%(表 2).缓释复合肥较CF和CCF显著增加生菜土壤放线菌,且以SRF1处理最高.低氮钾水平不同叶菜土壤放线菌质量摩尔浓度差异不大,不同处理间白菜和生菜土壤放线菌以SRF1处理最高.

  • 高氮钾水平瓢儿白和生菜土壤真菌质量摩尔浓度整体上高于白菜土壤.在高氮钾紫色土,SRF1,SRF2处理白菜土壤真菌显著低于CCF,但显著高于CF,增幅分别为13.4%和12.9%(表 3).瓢儿白土壤真菌以缓释复合肥显著高于CF,但显著低于CCF.缓释复合肥较CF和CCF显著增加生菜土壤真菌质量摩尔浓度.

    低氮钾水平叶菜土壤真菌质量摩尔浓度高于高氮钾土壤.低氮钾水平不同叶菜土壤真菌差异不大.缓释复合肥较CF和CCF显著增加白菜土壤真菌. SRF2较CF显著增加瓢儿白土壤真菌,而SRF1表现显著降低.生菜土壤真菌以SRF2最高,其次是SRF1.

  • 高氮钾水平白菜、瓢儿白、生菜土壤革兰氏阳性菌以缓释复合肥显著高于CF和CCF,且SRF1较CF显著增加6.1%,34.0%和8.6%,较CCF显著增加2.3%,24.0%和18.0%(表 4).低氮钾水平白菜、瓢儿白、生菜土壤革兰氏阳性菌SRF1较CF显著增加10.6%,8.1%和9.4%,较CCF显著增加17.0%,7.2%和15.5%(表 4).

    高氮钾水平白菜、瓢儿白、生菜土壤革兰氏阴性菌以缓释复合肥显著高于化肥和普通复合肥,且SRF1较CF显著增加10.3%,39.4%和13.8%,较CCF显著增加14.9%,22.7%和33.5%(表 4).缓释复合肥较化肥和普通复合肥显著增加低氮钾水平白菜和生菜土壤革兰氏阴性菌的质量摩尔浓度.

  • 表 5所示,高氮钾水平白菜、瓢儿白、生菜土壤多样性指数和丰富度指数均以SRF1处理最高.瓢儿白土壤均匀度指数以缓释复合肥最高,显著高于化肥和普通复合肥处理.

    低氮钾水平白菜土壤多样性指数和丰富度指数以缓释复合肥较高,高于化肥和普通复合肥.瓢儿白多样性指数、均匀度指数和丰富度指数在低氮钾水平土壤以SRF1显著高于CF.生菜土壤多样性指数和丰富度指数以缓释复合肥显著高于CF处理,且以SRF1最高.

  • 白菜:高氮钾紫色土SRF1处理白菜产量显著高于CF处理,增幅为5.1%(表 6),与CCF处理差异无统计学意义;而SRF2处理与CF和CCF处理表现均无统计学意义.低氮钾紫色土白菜产量以CCF最高,其次是SRF1和SRF2,CF最低.

    瓢儿白:高氮钾紫色土各处理瓢儿白产量表现差异无统计学意义,但以SRF1和SRF2处理较高.低氮钾紫色土瓢儿白产量以CCF处理最高,其次是SRF1处理,SRF1较CF显著增加瓢儿白产量,增幅为4.2%(表 6).

    生菜:高氮钾紫色土生菜产量以CCF和SRF1最高,其次是SRF2,SRF1较CF显著增加,增幅为8.4%(表 6).低氮钾紫色土生菜产量以CCF最高,其次是SRF1和SRF2,CF处理最低,SRF1处理较CF显著增加生菜产量,增幅为6.3%.

  • 由相关性分析可知(表 7),土壤细菌、放线菌、革兰氏阳性菌、革兰氏阴性菌与白菜产量的负相关性有统计学意义.土壤微生物(革兰氏阳性菌)与瓢儿白产量负相关性有统计学意义.土壤细菌、放线菌与生菜产量正相关性有统计学意义.白菜(真菌除外)和瓢儿白产量与土壤微生物呈负相关,而生菜产量与土壤微生物呈正相关.

  • 化肥大量施用虽然可以增加土壤养分,但长期施用下不仅使土壤酸化,而且还会破坏土壤结构,使土壤板结,致使土壤微生物的生命活动力减弱,不利于微生物对土壤的正效应[24].有研究指出[25-26],用有机肥料取代部分无机肥料的综合施肥方式,能刺激微生物生长繁殖,改变土壤微生物群落结构,促进土壤肥力的改善.这是因为有机肥带入了大量可被微生物分解利用的碳源和氮源,为微生物的繁殖提供了物质基础,同时有机肥成分本身也携带大量活的微生物,在某种程度上起到了“接种”作用,增加了土壤中微生物的数量[27-28].本研究中缓释复合肥含有一定量的有机质,较化肥和普通复合肥更有利于改善土壤微生物群落结构.

  • 2种氮钾水平紫色土均是中性土壤,土壤有机质、有效磷含量相当,但氮、钾差异大.研究结果显示,低氮钾土壤各类微生物大幅度高于高氮钾土壤.出现该现象的原因可能是土壤氮、钾养分较高时对微生物生存有抑制作用,而低氮钾土壤(北碚试验点)在施肥后改变土壤微域生境,提供微生物生存的最佳养分环境[29].有研究指出土壤氮、钾会影响土壤真菌的种类和数量,而磷与其相关性不大[30].低氮钾水平叶菜土壤真菌整体上高于铜梁试验点,原因有待进一步研究.但低氮钾水平缓释复合肥减钾处理土壤真菌并未出现大幅度显著增加,这可能是氮以及氮钾互相作用,影响钾素利用率[31],缓释复合肥中多种氮素形态与钾协同作用提高了钾素利用率,稳定了土壤微生物数量.高氮钾水平白菜土壤革兰氏阳性菌和革兰氏阴性菌以SRF2最高,其次是SRF1;而低氮钾土壤刚好相反,以SRF1最高,其次是SRF2.可见,在高氮钾土壤上,缓释复合肥减钾30%(SRF2)有利于提高白菜土壤微生物含量,而低氮钾土壤以减量10%(SRF1)表现最好.

  • 土壤微生物群落结构的影响差异因栽培作物不同而不同[32-33].高氮钾水平瓢儿白和生菜土壤细菌整体上高于白菜土壤,且瓢儿白土壤放线菌、真菌、革兰氏阳性菌和革兰氏阴性菌均整体上高于其他叶菜土壤.出现这种情况的原因可能与栽培作物分泌物对根域环境的影响不同有关,可见瓢儿白较其他叶菜对土壤微生物根际环境影响较大.低氮钾水平瓢儿白土壤革兰氏阳性菌以SRF2最高,其次是SRF1,而其他叶菜土壤革兰氏阳性菌以SRF1处理最高,显著高于其他处理.说明栽培作物不同缓释复合肥对土壤革兰氏阳性菌的影响不同.

  • 2种氮钾水平白菜、瓢儿白、生菜产量以施用缓释复合肥为高,高于化肥.因为缓释复合肥缓慢释放养分,调节土壤肥力,满足作物生长所需的适宜养分,进而增加作物产量[34].相关性分析可知,土壤细菌对叶菜产量的影响较密切,其次是放线菌,土壤真菌与其他叶菜产量相关性不大(除瓢儿白).不同栽培作物与土壤微生物相关性表现不同.白菜产量与土壤细菌、放线菌、革兰氏阳性菌和革兰氏阴性菌的负相关性有统计学意义;瓢儿白产量与土壤细菌、放线菌、真菌和革兰氏阴性菌的负相关性有统计学意义;生菜产量与土壤细菌和放线菌的正相关性有统计学意义.可能是不同作物分泌物对土壤微域环境影响不同导致微生物种类对作物产量的作用产生差异.

  • 缓释复合肥因具有缓释特性,长期保持土壤中氮、磷、钾离子的数量和活性,适宜比例的氮磷钾持续、稳定地向土壤提供营养元素,可改善土壤微生物群落结构,提高土壤肥力,促进作物产量增加.根据本研究对不同叶菜产量指标的分析,高氮钾和低氮钾水平土壤在施用缓释复合肥后,土壤肥力得到改善,较化肥处理增加叶菜产量,增幅范围3.7%~8.4%,综合分析可知,在缓释复合肥不同减量处理中以减量10%(即SRF1)为最佳处理,且在低氮钾水平紫色土上施用效果最好.

参考文献 (34)

目录

/

返回文章
返回