留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

临界和超临界的薛定谔泊松方程正的径向基态解

上一篇

下一篇

王玉婷, 商彦英. 临界和超临界的薛定谔泊松方程正的径向基态解[J]. 西南师范大学学报(自然科学版), 2021, 46(4): 20-24. doi: 10.13718/j.cnki.xsxb.2021.04.005
引用本文: 王玉婷, 商彦英. 临界和超临界的薛定谔泊松方程正的径向基态解[J]. 西南师范大学学报(自然科学版), 2021, 46(4): 20-24. doi: 10.13718/j.cnki.xsxb.2021.04.005
WANG Yu-ting, SHANG Yang-ying. Positive Radial Ground State Solution with Critical and Supercritical Schr dinger Poission Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(4): 20-24. doi: 10.13718/j.cnki.xsxb.2021.04.005
Citation: WANG Yu-ting, SHANG Yang-ying. Positive Radial Ground State Solution with Critical and Supercritical Schr dinger Poission Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(4): 20-24. doi: 10.13718/j.cnki.xsxb.2021.04.005

临界和超临界的薛定谔泊松方程正的径向基态解

  • 基金项目: 国家自然科学基金项目(11971393)
详细信息
    作者简介:

    王玉婷,硕士研究生,主要从事非线性分析的研究 .

    通讯作者: 商彦英,副教授
  • 中图分类号: O176.3

Positive Radial Ground State Solution with Critical and Supercritical Schr dinger Poission Equation

  • 摘要: 近些年来,薛定谔方程或者薛定谔泊松方程基态解的问题一直受到广泛关注,学者们主要讨论了不同条件下正解、基态解、变号解等的存在性问题. 特别地,他们在不同的位势以及非线性项条件下研究了基态解的存在性,并且这些问题都是临界和次临界的情形,而对于临界和超临界情形下径向基态解的结果至今还没有人研究. 因此,本文通过使用Nehari流形的方法,得到带有临界和超临界指数的薛定谔泊松方程正的径向基态解的存在性.
  • 加载中
  • [1] AZZOLLINI A, POMPONIO A. Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations[J]. J Math Anal Appl, 2008, 345(1): 90-108. doi: 10.1016/j.jmaa.2008.03.057
    [2] ZHAO L G, ZHAO F K. On the Existence of Solutions for the Schrödinger-Poisson Equations[J]. J Math Anal Appl, 2008, 346(1): 155-169. doi: 10.1016/j.jmaa.2008.04.053
    [3] ALVES C O, SOUTO M A S, SOARES S H M. Schrödinger-Poisson Equations Without Ambrosetti-Rabinowitz Condition[J]. J Math Anal Appl, 2011, 377(2): 584-592. doi: 10.1016/j.jmaa.2010.11.031
    [4] AMBROSETTI A, RUIZ D. Multiple Bound States for the Schrödinger-Poisson Problem[J]. Commun Contemp Math, 2008, 10(3): 391-404. doi: 10.1142/S021919970800282X
    [5] 李勇勇. 临界Schrödinger-Poisson系统的正解[D]. 重庆: 西南大学, 2018.
    [6] 李贵东, 唐春雷. 带有临界指数的Schrödinger方程正基态解的存在性[J]. 西南大学学报(自然科学版), 2018, 40(6): 92-96. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201806015.htm
    [7] 邵正梅, 欧增奇. 具有凹凸非线性项的Kirchhöff方程的多解性[J]. 西南师范大学学报(自然科学版), 2020, 45(4): 25-29. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2020.04.006
    [8] 余芳, 陈文晶. 带有临界指数增长的分数阶问题解的存在性[J]. 西南大学学报(自然科学版), 2020, 42(10): 116-123. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202010015.htm
    [9] 陈彬. 两类Kirchhöff型方程的正解和变号解的存在性与非存在性[D]. 重庆: 西南大学, 2020.
    [10] HUANG L R, ROCHA E M, CHEN J Q. Two Positive Solutions of a Class of Schrödinger-Poisson System with Indefinite Nonlinearity[J]. J Differential Equations, 2013, 255(8): 2463-2483. doi: 10.1016/j.jde.2013.06.022
    [11] ZHANG J. On the Schrödinger-Poisson Equations with a General Nonlinearity in the Critical Growth[J]. Nonlinear Anal, 2012, 75(18): 6391-6401. doi: 10.1016/j.na.2012.07.008
    [12] LI Y H, GU H. Existence of Solutions to Schrödinger-Poisson Systems with Critical and Supercritical Nonlinear Terms[J]. Mathematical Methods in the Applied Sciences, 2019, 42(7): 2279-2286. doi: 10.1002/mma.5507
    [13] BRÉZIS H, NIRENBERG L. Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[J]. Comm Pure Appl Math, 1983, 36(4): 437-477. doi: 10.1002/cpa.3160360405
    [14] BRÉZIS H, LIEB E. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals[J]. Proc Amer Math Soc, 1983, 88(3): 486-490. doi: 10.1090/S0002-9939-1983-0699419-3
  • 加载中
计量
  • 文章访问数:  783
  • HTML全文浏览数:  783
  • PDF下载数:  95
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-19
  • 刊出日期:  2021-04-20

临界和超临界的薛定谔泊松方程正的径向基态解

    通讯作者: 商彦英,副教授
    作者简介: 王玉婷,硕士研究生,主要从事非线性分析的研究
  • 西南大学 数学与统计学院,重庆 400715
基金项目:  国家自然科学基金项目(11971393)

摘要: 近些年来,薛定谔方程或者薛定谔泊松方程基态解的问题一直受到广泛关注,学者们主要讨论了不同条件下正解、基态解、变号解等的存在性问题. 特别地,他们在不同的位势以及非线性项条件下研究了基态解的存在性,并且这些问题都是临界和次临界的情形,而对于临界和超临界情形下径向基态解的结果至今还没有人研究. 因此,本文通过使用Nehari流形的方法,得到带有临界和超临界指数的薛定谔泊松方程正的径向基态解的存在性.

English Abstract

  • 近年来,很多学者考虑以下薛定谔泊松方程:

    文献[1]研究了当$ g(x, u)=|u|^{p-1} u \text { 时 } V(x)$p的范围,得到了方程(1)的基态解. 当p∈(2,3],且V(x)下方无界时,文献[2]通过全局紧性引理的方法得到了方程(1)基态解的存在性. 当g(xu)是次临界的,且V(x)是周期或渐进周期函数时,文献[3]通过山路定理得到了方程(1)基态解的存在性. 当g(xu)=up,且p∈(1,5)时,文献[4]得到了多个束缚解. 更多的结论我们可以参见文献[5-9]. 虽然,学者们都讨论了在超线性次临界和临界情形下基态解的存在性,但对于临界和超临界的情形,通过Nehari流形方法得到基态径向解的结论还没有被研究. 因此,本文讨论以下薛定谔泊松方程:

    其中$p \in(4,6), q \in(6,+\infty) $u5$b(x)|u|^{q^{2}} u $分别是$ \mathbb R ^{3}$中的临界项和超临界项,且b(x)满足以下条件:

    $ \left(\mathrm{B}_{1}\right) r>0, \mathop {\lim }\limits_{|x| \to \infty } \frac{b(x)}{|x|^{r}}=b_{0} \geqslant 0$

    $\left(\mathrm{B}_{2}\right) b_{\infty}=\mathop {\lim }\limits_{|x| \to \infty } b(x)<\infty $.

    通过Nehari流形的方法,我们得到了方程(2)带有临界和超临界指数的薛定谔泊松方程正的径向基态解的存在性. 主要结果如下:

    定理1     假设$p \in(4,6), q \in(6, \infty), \text { 且 } b \in C\left(\mathbb{R}^{3}, \mathbb{R}_{+}\right) $是径向函数,b(x)满足条件(B1),(B2),则方程(2)存在正的径向基态解.

  • 本文中,$H^{1}\left(\mathbb{R}^{3}\right) \text { 和 } D^{1,2}\left(\mathbb{R}^{3}\right) $表示通常的Sobolev空间,它们各自定义为

    相应的范数和内积分别为

    我们考虑$ H^{1}\left(\mathbb{R}^{3}\right)$中由径向函数所构成的子空间$H_{r}^{1}\left(\mathbb{R}^{3}\right) $,用‖·‖表示其范数,(·,·)表示其内积,〈·,·〉表示$H_{r}^{1}\left(\mathbb{R}^{3}\right) $中的元素与其对偶空间[$H_{r}^{1}\left(\mathbb{R}^{3}\right) $]*中元素的配对,|·|p表示$L^{p}\left(\mathbb{R}^{3}\right)(p \in[1, \infty)) $中的范数,$ |u|_{L_{b}^{q}}=\left(\int_{\mathbb{R}^{3}} b(x)|u|^{q} \mathrm{~d} x\right)^{\frac{1}{q}}$表示空间$L_{b}^{q}\left(\mathbb{R}^{3}\right)=\left\{u: \int_{\mathbb{R}^{3}} b(x)|u|^{q} \mathrm{~d} x<\infty\right\} $的范数,其中q∈[2,∞).

    下面,我们定义与方程(2)相对应的能量泛函$I: H_{r}^{1}\left(\mathbb{R}^{3}\right) \longrightarrow \mathbb{R} $

    其中$ \phi_{u} \text { 是 } \mathbb{R}^{3} \text { 中 }-\Delta \phi_{u}=u^{2}$的唯一解,这样I$H_{r}^{1}\left(\mathbb{R}^{3}\right) $)中定义是良好的,$I \in C^{1} $ (见注1),而且对任何的$ u, v \in D^{1,2}\left(\mathbb{R}^{3}\right)$,有

    因为能量泛函I(u)的临界点$\left(u, \phi_{u}\right) $是方程(2)的弱解,所以下面要寻找I(u)的临界点. 我们将通过Nehari流形的方法. 定义集合

    我们用S表示最佳Sobolev常数[10]

    则有$S|u|_{6}^{2} \leqslant|\nabla u|_{2}^{2} $. 如果$u \in H_{r}^{1}\left(\mathbb{R}^{3}\right) $,则

    而且,最佳常数S通过函数$\frac{\varepsilon^{\frac{1}{4}}}{\left(\varepsilon+|x|^{2}\right)^{\frac{1}{2}}} $取到.

  • 首先,关于泊松方程解的性质,我们从文献[11]中回顾以下引理:

    引理1[11]     对于每个$u \in H^{1}\left(\mathbb{R}^{3}\right) $,存在唯一的$\phi_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right) $满足$-\Delta \phi_{u}=u^{2}, x \in \mathbb{R}^{3} $. 其中$\phi_{u}(x)= $$ \frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{u^{2}(y)}{|x-y|} \mathrm{d} y$,而且:

    (i) $\left\|\phi_{u}\right\|_{D^{1,2}\left(\mathbb{R}^{3}\right)}^{2}=\int_{\mathbb{R}^{3}} \phi_{u} u^{2} \mathrm{~d} x $

    (ii) $ \phi_{u}(x) \geqslant 0, x \in \mathbb{R}^{3}$

    (iii) 对于任何$ t>0, \phi_{tu} =t^{2} \phi_{u} $

    (iv) 对于任何$ u \in H^{1}\left(\mathbb{R}^{3}\right),\left\|\phi_{u}\right\|_{D^{1,2}\left(\mathbb{R}^{3}\right)} \leqslant S^{\frac{-1}{2}}|u|_{\frac{12}{5}}^{2},$$\int_{\mathbb{R}^{3}} \phi_{u} u^{2} \mathrm{~d} x \leqslant S^{-1}|u|_{\frac{12}{5}}^{4} $

    (v) 如果u是径向的,那么$\phi_{u} $也是径向的;

    (vi) 如果在$\mathbb{R}^{3} $上几乎处处有$ u_{n} \rightharpoonup u, u_{n} \rightarrow u(n \rightarrow \infty)$,则在$ D^{1,2}\left(\mathbb{R}^{3}\right) \text { 上 } \phi_{u_{n}} \rightharpoonup \phi_{u}$.

    引理1说明,方程(2)能被表示为

    引理2[12]     若b(x)满足条件(B1)或(B2),则嵌入$ H_{r}^{1}\left(\mathbb{R}^{3}\right)$$\circlearrowleft $$ L^{s}\left(\mathbb{R}^{3}\right)$$ H_{r}^{1}\left(\mathbb{R}^{3}\right)$$\circlearrowleft $$L_{b}^{q}\left(\mathbb{R}^{3}\right) $是紧的,其中$ s \in(2,6), q \in(6,6+2 r), H_{r}^{1}\left(\mathbb{R}^{3}\right)$$\circlearrowleft $ $L^{s}\left(\mathbb{R}^{3}\right)(s \in[2,6]) $是连续的.

    引理3[12]     若b(x)满足条件(B1)或(B2),$ B: H_{r}^{1}\left(\mathbb{R}^{3}\right) \longrightarrow \mathbb{R}^{3}, B(u)=\int_{\mathbb{R}^{3}} b(x)|u|^{q} \mathrm{~d} x$,在$ H_{r}^{1}\left(\mathbb{R}^{3}\right)$$u_{n} \rightharpoonup u $,那么,在$ \left[H_{r}^{1}\left(\mathbb{R}^{3}\right)\right]^{*} \text { 中 } B\left(u_{n}\right) \rightarrow B(u), B^{\prime}\left(u_{n}\right) \rightarrow B^{\prime}(u)$,且BC1类.

    注1     根据上面的引理,可以得到$ I: H_{r}^{1}\left(\mathbb{R}^{3}\right) \longrightarrow \mathbb{R}^{3}$C1类.

    引理4     $N \neq \emptyset $,且存在唯一的$ t_{u} \in N$,使得$\mathop {\sup }\limits_{t \ge 0} I(tu) = I\left( {{t_u}u} \right)$.

        根据引理1,$ \phi_{u}=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{u^{2}(y)}{|x-y|} \mathrm{d} y$,且$ \phi_{t u}=t^{2} \phi_{u} $. 记$ \alpha(t)=I(t u)$,则当t充分小时,我们有

    同样地,当t充分大时,有

    所以$\alpha^{\prime}(t)>0,0<t<t_{u} ; \alpha^{\prime}(t)<0, t>t_{u} $. 从而,我们得到

    $ t_{u} u \in N$. 下面证明唯一性:

    假设存在$ t_{v} u \in N$,则$I^{\prime}\left(t_{u} u\right) t_{u} u=0, I^{\prime}\left(t_{v} u\right) t_{v} u=0 $,从而可得

    也就是说$ t_{u}=t_{v}$,证明完成.

    引理5     $ \quad m=\mathop {\inf }\limits_{t \geqslant 0} I(u)>0$.

         因为$ u \in N, \text { 故 }\left\langle I^{\prime}(u), u\right\rangle=0$,从而可得

    由于$p \in(4,6), q \in(6, \infty), \text { 故 } I(u)>0$,从而m>0.

    引理6     $m = \mathop {\inf }\limits_{t \geqslant 0} I(u) < \frac{1}{3}{S^{\frac{3}{2}}} $.

    证明的思想方法见文献[12-13].

    引理7     设$\left\{u_{n}\right\} \subset H_{r}^{1}\left(\mathbb{R}^{3}\right) $,使得$ I^{\prime}\left(u_{n}\right) \rightarrow 0, I\left(u_{n}\right) \rightarrow m$,则{un}是收敛的序列.

         先证{un}是有界的.

    根据m的定义及已知条件,可以得到

    这就表明{un}是有界的. 下面证明$ u_{n} \rightharpoonup u \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$.

    由{un}有界,我们能够假设在$ H_{r}^{1}\left(\mathbb{R}^{3}\right)$中,在子列意义下$ u_{n} \rightharpoonup u$,则在$L^{s}\left(\mathbb{R}^{3}\right) $$u_{n} \rightarrow u $,当s∈(2,6)时,在$L_{b}^{q}\left(\mathbb{R}^{3}\right) $$ u_{n} \rightarrow u, u_{n}(x) \rightarrow u(x)\left(\text { a. e. } x \in \mathbb{R}^{3}\right) $. 又由$I^{\prime}\left(u_{n}\right)=0 $,通过计算容易得到$ I^{\prime}(u)=0 $. 设$v_{n}=u_{n}-u $,则由Brézis-Lieb引理[14],可得

    根据引理2和引理3,可以得到

    假设${v_n} $$\nrightarrow $$0 $,则让$\left\|v_{n}\right\|^{2} \rightarrow l $,由(3)式,$ l \geqslant S l^{\frac{1}{3}}$,即$ l \geqslant S^{\frac{3}{2}} $. 然而有

    显然与引理6矛盾,故$v_{n} \rightarrow 0 $,从而在$H_{r}^{1}\left(\mathbb{R}^{3}\right) $$u_{n} \rightarrow u $.

  • 定理1的证明

         根据I的定义,由Fatou引理,可以得到

    因为$ I(u) \geqslant m $,所以$I(u)=m $.

    易证$|u| \in N, I(|u|)=I(u)=m . \text { 令 } u=u^{+}+u^{-} $. 根据

    $ u^{-}$乘上式,可以得到$ \left\|u^{-}\right\|^{2}=0$,即$u^{-}=0 $,由强极大值原理得u>0.

参考文献 (14)

目录

/

返回文章
返回