-
开放科学(资源服务)标志码(OSID):
-
三七又称田七、人参三七、金不换等,为五加科植物,主要产于云南、广西、四川,是一种应用于临床治疗的中药材[1]. 通过研究发现,三七不仅可以治疗咯血、衄血、外伤性出血、肿痛等症状[2],对冠心病、心绞痛、糖尿病、血栓等疾病也具有良好疗效[3]. 大量的科学研究表明,三七有效成分中不仅含有Rb1,Rd,Re,Rg1,Rg2,Rh1,R1,R2,R3,R4,R6,R7等人参皂苷,还包括77种挥发油、17种氨基酸、丹参碱、三七黄酮类和多糖等[4]. 三七的药用加工方式分为精加工(提炼萃取物)和粗加工(研磨成粉末)两类. 为了尽可能降低成本和牟取最大化的利益,不法商人选择将三七粉与几种中药材粉末混合,在医药市场上以相同甚至更低的价格出售,不仅扰乱了市场秩序,还损害了消费者的利益和健康. 为解决掺假问题,找出能够快速精确地鉴别三七粉末纯度的方法是非常必要的[5].
中国传统药材的光谱鉴定主要使用特定波长的光照射或扫描样品,获取特定的图谱数据. 中药材光谱鉴别主要包括紫外光谱、红外光谱、荧光光谱、核磁共振和质谱等方法[6-7]. 傅利叶中红外光谱技术(Fourier transform mid-infrared,FT-MIR)能检测多组分因素,还具有扫描速度快、灵敏度高等优点,不需要与KBr等混合制样,无需压片,比近红外扫描获得的数据具有更高的完整度. 由于FT-MIR具有检测精度高、分辨率高、应用范围广以及不需要对样品做预处理等优点,已广泛应用于预防医学、农业、生殖生物学等领域对样品进行定量分析.
图 1为实验流程,实验使用标准正态变换(Standard normal variate,SNV)、基线校准(Baseline)等方法单独或组合进行原始光谱数据降噪及平滑;协同区间(Synergy interval,Si)、竞争自适应加权算法(Competitive adaptive reweighted sampling,CARS)、连续投影算法(Successive projection algorithm,SPA)等方法用于挑选建模使用的特征变量;最后分别建立偏最小二乘回归(Partial least squares regression,PLSR)模型及支持向量回归(Support vector regression,SVR)模型,再比较建模效果. 甘草、合欢树皮以及向日葵花盘等药材粉末具有与三七粉末相似的外观和物理性质,仅凭肉眼几乎无法分辨他们的差别,这些药材的价格也远比三七低廉,因此常用于配制三七伪品. 实验将20头纯三七粉末与甘草、合欢树皮和向日葵花盘等药材粉末分别按实验设计的10个掺比混合,并采集所有样品的FT-MIR光谱数据[8-9].
Research of Quantitative Detection Model of Adulteration Components in Panax notoginseng Powder Based on FT-MIR
-
摘要: 高品质三七价格昂贵, 常以粉末形式出售. 为实现快速检测市场上三七粉末掺伪成分的定量检测, 该文使用傅里叶中红外光谱技术(FT-MIR)采集三七粉末及其伪品的光谱信息, 使用标准正则变换(SNV)和基线校准(Baseline)方法对原始光谱进行预处理, 通过协同区间(Si)、连续投影算法(SPA)、竞争自适应加权算法(CARS)等方法选择特征变量, 分别建立偏最小二乘回归(PLSR)、支持向量回归(SVR)模型. 严选出能体现纯净三七粉末样品与掺杂三七粉末样品之间区别的特征变量来建立定量模型, 可以提高模型鉴别精确度和稳健性. 决定系数R2、均方根误差(RMSE)用于评价定量模型的预测能力. 实验结果表明, FT-MIR是定量检测三七粉末掺入伪品的有效方法. 实验采用Si、CARS和SPA 3种变量选择方法来提高模型的稳定性和预测精度, 其中基于CARS方法挑选的特征变量训练的SVR和PLSR模型对三七粉成分检测都有较好的预测效果. 利用模型能够快速准确地检测三七粉末中掺入的伪品含量, 对市售三七粉质量分级以及维护消费者权益、保护其生命健康方面具有较高的应用价值.
-
关键词:
- 傅利叶中红外光谱技术 /
- 三七粉末 /
- 定量检测 /
- 支持向量回归 /
- 偏最小二乘回归
Abstract: High-quality Panax notoginseng (P. notoginseng) is expensive and often sold in powder form. In order to quickly detect the adulterated components of P. notoginseng powder in the market, Fourier transform mid infrared spectroscopy (FT-MIR) was used to collect the spectral information of P. notoginseng powder and its adulterants. Standard normal variate (SNV) and baseline calibration were used to preprocess the original spectrum in this work. Then characteristic variables were selected by Synergy interval (Si), successive projection algorithm (SPA), competitive adaptive weighting sampling (CARS) and so on. Partial least squares regression (PLSR) and support vector regression (SVR) models were established, respectively. Selecting the characteristic variables which can reflect the difference between pure and doped samples of P. notoginseng powder to establish the quantitative model can improve the identification accuracy and the robustness of the model to the greatest extent. The root mean square error RMSE and absolute coefficient R2 were used to evaluate the prediction ability of the quantitative model. The experimental results show that FT-MIR is an effective method to quantitatively detect the adulteration of P. notoginseng powder. In the experiment, three variable selection methods of Si, CARS and SPA are used to improve the stability and prediction accuracy of the model. The SVR and PLSR models trained based on the characteristic variables selected by CARS method have a great prediction effect on the composition detection of P. notoginseng powder. The model can quickly and accurately detect the content of counterfeit products in P. notoginseng powder. It has high application value for the quality classification of commercial P. notoginseng powder, safeguarding the rights and interests of consumers and protecting their life and health.-
Key words:
- FT-MIR /
- Panax notoginseng powder /
- quantitative detection /
- SVR /
- PLSR .
-
表 1 三七粉末分别与向日葵花盘粉末、甘草粉末、合欢树皮粉末混合的比例
序号 三七粉含量/% 向日葵花盘粉末/% 甘草粉末/% 合欢树皮粉末/% 样本数量 1 90 10 10 10 35 2 80 20 20 20 35 3 70 30 30 30 35 4 60 40 40 40 35 5 50 50 50 50 35 6 40 60 60 60 35 7 30 70 70 70 35 8 20 80 80 80 35 9 10 90 90 90 35 10 0 100 100 100 35 表 2 基于各特征选择方法的PLSR/SVR建模结果
模型 变量数 校正集 预测集 RMSE值 Rc2 RMSE值 Rp2 PLSR 7 468 0.044 9 0.975 6 0.045 3 0.975 1 Si-PLSR 1 864 0.037 0 0.983 4 0.037 2 0.983 3 Si-CARS-PLSR 321 0.024 4 0.992 8 0.024 7 0.992 7 Si-SPA-PLSR 14 0.026 7 0.991 4 0.026 9 0.991 2 Si-CARS-SPA-PLSR 17 0.027 0 0.991 2 0.027 3 0.991 0 CARS-PLSR 254 0.037 6 0.982 9 0.037 9 0.982 6 CARS-SPA-PLSR 12 0.029 6 0.989 4 0.029 8 0.989 3 SVR 7 468 0.023 9 0.993 2 0.022 6 0.993 0 Si-SVR 1 864 0.020 9 0.983 4 0.020 8 0.983 3 Si-CARS-SVR 321 0.020 9 0.995 1 0.021 5 0.994 7 Si-SPA-SVR 14 0.023 7 0.994 1 0.022 6 0.993 9 Si-CARS-SPA-SVR 17 0.022 2 0.994 2 0.022 3 0.994 1 CARS-SVR 254 0.019 9 0.995 5 0.020 5 0.995 2 CARS-SPA-SVR 12 0.022 2 0.994 1 0.02 26 0.993 9 -
[1] WANG T, GUO R X, ZHOU G H, et al. Traditional Uses, Botany, Phytochemistry, Pharmacology and Toxicology of Panax Notoginseng (Burk. ) F. H. Chen: a Review[J]. Journal of Ethnopharmacology, 2016, 188: 234-258. doi: 10.1016/j.jep.2016.05.005 [2] GUO H B, CUI X M, AN N, et al. Sanchi Ginseng (Panax Notoginseng (Burkill) F. H. Chen) in China: Distribution, Cultivation and Variations[J]. Genetic Resources and Crop Evolution, 2010, 57(3): 453-460. doi: 10.1007/s10722-010-9531-2 [3] NG T B. Pharmacological Activity of Sanchi Ginseng (Panax Notoginseng)[J]. Journal of Pharmacy and Pharmacology, 2006, 58(8): 1007-1019. [4] 夏鹏国, 张顺仓, 梁宗锁, 等. 三七化学成分的研究历程和概况[J]. 中草药, 2014, 45(17): 2564-2570. doi: 10.7501/j.issn.0253-2670.2014.17.026 [5] 杨晓东. 三七粉品质的红外光谱快速检测算法及应用研究[D]. 重庆: 西南大学, 2020. [6] 孙艳, 赵余庆. 药食同源品中重金属的检测方法与思考[J]. 中草药, 2011, 42(11): 2351-2359. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201111045.htm [7] 王峥涛. 中药质量标准研究进展与展望[J]. 中国天然药物, 2006, 4(6): 403-410. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTR200606002.htm [8] 李沿飞, 李红, 赵博, 等. FT-MIR法鉴别植物油和精炼潲水油的影响因素分析[J]. 食品与发酵科技, 2014, 50(2): 85-88. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SKSF201402023.htm [9] 杨芳, 刘朝霞, 牛文娟, 等. 基于FT-MIR的秸秆炭热值快速检测方法[J]. 华中农业大学学报, 2017, 36(6): 121-126. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HZNY201706017.htm [10] 向阳, 王世博, 葛世荣, 等. 粉尘环境下典型煤岩近红外光谱特征及识别方法[J]. 光谱学与光谱分析, 2020, 40(11): 3430-3437. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202011021.htm [11] 刘燕德, 杜秀洋, 李斌, 等. 太赫兹时域光谱技术对紫米掺假的检测研究[J]. 光谱学与光谱分析, 2020, 40(8): 2382-2387. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202008010.htm [12] 王琼. 近红外光谱对石榴品种的判别及品质的无损检测[D]. 杨凌: 西北农林科技大学, 2017. [13] 张香萍. 联合空间与光谱信息的高光谱图像异常目标检测方法研究[D]. 长沙: 湖南大学, 2017. [14] XU L, FU X S, FU H Y, et al. Rapid Detection of Exogenous Adulterants and Species Discrimination for a Chinese Functional Tea (Banlangen) by Fourier-Transform Near-Infrared (FT-NIR) Spectroscopy and Chemometrics[J]. Journal of Food Quality, 2015, 38(6): 450-457. doi: 10.1111/jfq.12160 [15] 梁栋, 管青松, 黄文江, 等. 基于支持向量机回归的冬小麦叶面积指数遥感反演[J]. 农业工程学报, 2013, 29(7): 117-123. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201307017.htm [16] YANG X D, SONG J, PENG L, et al. Improving Identification Ability of Adulterants in Powdered Panax Notoginseng Using Particle Swarm Optimization and Data Fusion[J]. Infrared Physics & Technology, 2019, 103: 103101. [17] 张华秀. 近红外光谱法快速检测牛奶中蛋白质与脂肪含量[D]. 长沙: 中南大学, 2010. [18] 李勋兰, 尹旭敏, 杨蕾, 等. W·默科特果实内在品质近红外光谱检测研究[J]. 西南大学学报(自然科学版), 2020, 42(12): 60-66. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.12.007 [19] 马帅帅, 于慧春, 殷勇, 等. 黄瓜水分和硬度高光谱特征波长选择与预测模型构建[J]. 食品与机械, 2021, 37(2): 145-151. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX202102028.htm [20] NIE P C, WU D, SUN D-W, et al. Potential of Visible and Near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants[J]. Sensors (Basel, Switzerland), 2013, 13(10): 13820-13834. [21] CHEN H, TAN C, LIN Z, et al. Quantifying Several Adulterants of Notoginseng Powder by Near-Infrared Spectroscopy and Multivariate Calibration[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 211: 280-286. [22] 康盛, 魏兆航, 杨帆, 等. LIBS结合化学计量学方法在土壤镉检测中的应用[J]. 农业工程, 2019, 9(10): 38-42. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYGE201910007.htm