留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

随机波动格点方程的后向紧随机吸引子

上一篇

下一篇

张子怡, 李扬荣. 随机波动格点方程的后向紧随机吸引子[J]. 西南师范大学学报(自然科学版), 2022, 47(10): 19-25. doi: 10.13718/j.cnki.xsxb.2022.10.003
引用本文: 张子怡, 李扬荣. 随机波动格点方程的后向紧随机吸引子[J]. 西南师范大学学报(自然科学版), 2022, 47(10): 19-25. doi: 10.13718/j.cnki.xsxb.2022.10.003
ZHANG Ziyi, LI Yangrong. On Backward Compact Random Attractors for Non-Autonomous Stochastic Wave Lattice Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(10): 19-25. doi: 10.13718/j.cnki.xsxb.2022.10.003
Citation: ZHANG Ziyi, LI Yangrong. On Backward Compact Random Attractors for Non-Autonomous Stochastic Wave Lattice Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(10): 19-25. doi: 10.13718/j.cnki.xsxb.2022.10.003

随机波动格点方程的后向紧随机吸引子

  • 基金项目: 国家自然科学基金项目(11571283)
详细信息
    作者简介:

    张子怡, 硕士研究生, 主要从事无穷维随机动力系统与随机分析的研究 .

    通讯作者: 李扬荣, 博士生导师, 教授
  • 中图分类号: O193

On Backward Compact Random Attractors for Non-Autonomous Stochastic Wave Lattice Equation

  • 摘要: 在对外力后向缓增的假设条件下,证明了非自治随机波动格点方程在E=$ \ell $λ2×$ \ell $2空间上存在后向紧一致吸收集,并且由方程生成的随机动力系统在吸收集上是后向渐近紧的. 最后利用吸引子的存在性定理,证明了非自治随机波动格点方程在E=$ \ell $λ2×$ \ell $2空间上存在后向紧随吸引子.
  • 加载中
  • [1] doi: https://www.sciencedirect.com/science/article/pii/S0898122117303048 YIN J Y, LI Y R, GU A H. Backwards Compact Attractors and Periodic Attractors for Non-Autonomous Damped Wave Equations on an Unbounded Domain [J]. Computers & Mathematics With Applications, 2017, 74(4): 744-758.
    [2] LI Y R, YANG S. Backward Compact and Periodic Random Attractors for Non-Autonomous Sine-Gordon Equations with Multiplicative Noise [J]. Communications on Pure & Applied Analysis, 2019, 18(3): 1155-1175.
    [3] 宋立, 李扬荣. 非自治随机p-Laplacian格点方程的后向紧随机吸引子[J]. 西南大学学报(自然科学版), 2021, 43(4): 92-99. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202104012.htm
    [4] WANG R H, LI Y R. Regularity and Backward Compactness of Attractors for Non-Autonomous Lattice Systems with Random Coefficients [J]. Applied Mathematics and Computation, 2019, 354: 86-102.
    [5] WANG R H, LI Y R. Backward Compactness and Periodicity of Random Attractors for Stochastic Wave Equations with Varying Coefficients [J]. Discrete & Continuous Dynamical Systems-B, 2019, 24(8): 4145-4167.
    [6] CARABALLO T, LU K N. Attractors for Stochastic Lattice Dynamical Systems with a Multiplicative Noise [J]. Frontiers of Mathematics in China, 2008, 3(3): 317-335. doi: 10.1007/s11464-008-0028-7
    [7] BATES P W, LISEI H, LU K N. Attractors for Stochastic Lattice Dynamical Systems [J]. Stochastics and Dynamics, 2006, 6(1): 1-21. doi: 10.1142/S0219493706001621
    [8] ZHOU S F. Attractors for Lattice Systems Corresponding to Evolution Equations [J]. Nonlinearity, 2002, 15(4): 1079-1095. doi: 10.1088/0951-7715/15/4/307
    [9] doi: https://www.sciencedirect.com/science/article/pii/S0362546X09008554 WANG X H, LI S Y, XU D Y. Random Attractors for Second-Order Stochastic Lattice Dynamical Systems [J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(1): 483-494.
    [10] HAN X Y. Random Attractors for Second Order Stochastic Lattice Dynamical Systems with Multiplicative Noise in Weighted Spaces [J]. Stochastics and Dynamics, 2012, 12(3): 1150024. doi: 10.1142/S0219493711500249
    [11] WANG R H, LI Y R. Asymptotic Behavior of Stochastic Discrete Wave Equations with Nonlinear Noise and Damping [J]. Journal of Mathematical Physics, 2020, 61(5): 052701. doi: 10.1063/1.5132404
    [12] doi: https://www.sciencedirect.com/science/article/pii/S0362546X15003326 WANG R H, WANG B X. Random Dynamics of Lattice Wave Equations Driven by Infinite-Dimensional Nonlinear Noise [J]. Discrete & Continuous Dynamical Systems - B, 2020, 25(7): 2461-2493.
    [13] doi: https://www.sciencedirect.com/science/article/pii/S0167278918302616 WANG S L, LI Y R. Longtime Robustness of Pullback Random Attractors for Stochastic Magneto-Hydrodynamics Equations [J]. Physica D: Nonlinear Phenomena, 2018, 382-383: 46-57.
    [14] doi: https://www.sciencedirect.com/science/article/pii/S0294144998800322 DAMASCELLI L. Comparison Theorems for some Quasilinear Degenerate Elliptic Operators and Applications to Symmetry and Monotonicity Results [J]. Annales De l'Institut Henri Poincaré C, Analyse Non Linéaire, 1998, 15(4): 493-516.
    [15] DUAN J Q, LU K N, SCHMALFUSS B. Invariant Manifolds for Stochastic Partial Differential Equations [J]. The Annals of Probability, 2003, 31(4): 2109-2135.
  • 加载中
计量
  • 文章访问数:  868
  • HTML全文浏览数:  868
  • PDF下载数:  155
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-18
  • 刊出日期:  2022-10-20

随机波动格点方程的后向紧随机吸引子

    通讯作者: 李扬荣, 博士生导师, 教授
    作者简介: 张子怡, 硕士研究生, 主要从事无穷维随机动力系统与随机分析的研究
  • 西南大学 数学与统计学院, 重庆 400715
基金项目:  国家自然科学基金项目(11571283)

摘要: 在对外力后向缓增的假设条件下,证明了非自治随机波动格点方程在E=$ \ell $λ2×$ \ell $2空间上存在后向紧一致吸收集,并且由方程生成的随机动力系统在吸收集上是后向渐近紧的. 最后利用吸引子的存在性定理,证明了非自治随机波动格点方程在E=$ \ell $λ2×$ \ell $2空间上存在后向紧随吸引子.

English Abstract

  • 文献[1-7]研究了吸引子的存在性以及吸引子的后向紧性并建立了相对完善的理论体系. 文献[8-10]研究了二阶格点方程的吸引子的存在性. 文献[11]以及文献[12]研究了带有非线性噪音的弱吸引子的存在性. 本文将在文献[11]的基础上,研究带有乘法噪音的非自治随机波动格点方程的后向紧吸引子的存在性.

  • 本文将在$ \ell $2空间上讨论带有乘法噪音的非自治随机波动格点方程:

    其中:$ \mathbb{Z}$代表整数集;λα为大于0的常数;W(·,ω)是定义在度量动力系统(Ω$ \mathscr{F}$P,{θt}t$ \mathbb{R}$)上的双边实值Wiener过程,Ω={ωC($ \mathbb{R}$$ \mathbb{R}$):ω(0)=0},$ \mathscr{F}$=$ \mathfrak{B}$(Ω),P是(Ω$ \mathscr{F}$)上的Wiener测度,{θt}t$ \mathbb{R}$定义为:θtω(·)=ω(·+t)-ω(t),(ωt)∈Ω×$ \mathbb{R}$;°表示Stratonovich积分意义下的乘法噪声;$ \dot{u}_i=\frac{\mathrm{d} u}{\mathrm{~d} t}$fihiC1($ \mathbb{R}$$ \mathbb{R}$). 对于h=(hi)i$ \mathbb{Z}$f=(fi)i$ \mathbb{Z}$g=(gi)i$ \mathbb{Z}$αjηj>0(j=1,2,3),有如下假设:

    (A1)

    (A2) $ F(s)=\int_0^s f(r) \mathrm{d} r$,且fi满足:

    (A3) gLloc2($ \mathbb{R}$$ \ell $2)且满足:

    定义$ \ell $2上的有界算子:

    则有

    $ \delta=\frac{\alpha_1 \lambda}{4 \lambda+\alpha_2^2} \geqslant 0, 0 \leqslant \xi<\frac{1}{\delta}$φ=(uv)T,定义$ \ell $2上的内积(·,·),(·,·)λ和范数‖·‖,‖·‖λ

    其中u=(ui)i$ \mathbb{Z}$v=(vi)i$ \mathbb{Z}$E=$ \ell $λ2×$ \ell $2,易证1-ξδ≥0且范数‖·‖与‖·‖λ等价.

    ωΩt$ \mathbb{R}$,令v=$ \dot u$+δu-αuz(θtω),z(θtω)=$ -\int_{-\infty}^0 \mathrm{e}^r \theta_t \omega(r) \mathrm{d} r$是方程dz+zdt=dω(t)的解,且由文献[14]可知:

    则方程(1)可转化为一阶随机微分方程

    由文献[8, 9, 12]可知,f(φ),h(φ)是EE的映射,且对任意T>0,φ0E,方程(9)存在唯一的连续依赖于初值φ0的解φ(t)∈L2(ΩC([τ,+∞),E)),对φ0Et≥0,τ$ \mathbb{R}$ωΩ,定义

    可以验证Φ是一个非自治的随机动力系统,即满足:

    在下文中,设$ \mathfrak{D}$X中所有后向缓增集构成的集族. 集合$ \mathscr{D}$$ \mathfrak{D}$当且仅当

    可以证明$ \mathfrak{D}$是包含封闭的,即若$ \mathscr{A}$$ \tilde{\mathscr{A}}$$ \tilde{\mathscr{A}}$$ \mathfrak{D}$,有$ \mathscr{A}$$ \mathfrak{D}$成立.

  • 引理1   若假设(A1),(A2),(A3)成立,则对任意后向缓增集$ \mathscr{D}$$ \mathfrak{D}$,任意的τ$ \mathbb{R}$ωΩ,存在T=T($ \mathscr{D}$τω)≥1,使得当φs-t$ \mathscr{D}$(s-tθ-tω)时,有

    其中

       方程(9)可以等价地写为

    其中

    对任意固定的τ$ \mathbb{R}$ωΩφs-t$ \mathscr{D}$(s-tθ-tω),令$u=\frac{\alpha_1 \lambda}{\sqrt{4 \lambda+\alpha_2^2}\left(\alpha_2+\sqrt{4 \lambda+\alpha_2^2}\right)}, \hat{\lambda}= $$ \max \left\{1, \frac{1}{\lambda}\right\}$μ=min{2υδη1γ},方程(12)与φ(r)=φ(rs-tθ-sωφs-t)(其中sτ)做内积(·,·)E得到

    由文献[9]的方法,令$ \alpha<\frac{\sqrt{\pi} \mu}{2\left(3+2 \delta+4 \xi+2 \alpha_2+2 \eta_3\right)\left(2 \frac{\eta_1 \eta_3}{\eta_2}+\hat{\lambda}\right)(2+\sqrt{\pi})}<1$利用Hölder不等式及Young不等式,可证

    又令

    将(17)-(19)式代入(16)式可得

    对(20)式利用Gronwall不等式,计算可得

    由(2),(3)式易证f(0)=0,‖f(u)‖≤maxs∈[-‖u‖,‖u‖]|f′(s)|‖u‖,则有

    对(21)式关于s∈(-∞,τ]取上确界,结合(10)式可知,存在T($ \mathscr{D}$sω)≥1使得当tT时,有

    因此(11)式得证,即

    推论1   若假设(A1),(A2),(A3)成立,由引理1,方程(9)生成的非自治随机动力系统满足文献[3],[13]中拉回后向一致吸收集存在的条件,即协循环{Φ(t)}t≥0存在$ \mathfrak{D}$-拉回后向一致吸收集$ \mathscr{K}$$ \mathfrak{D}$,其中

    引理2   若假设(A1),(A2),(A3)成立,则对∀ε>0,(τω$ \mathscr{D}$)∈($ \mathbb{R}$×Ω×$ \mathfrak{D}$),φs-t$ \mathscr{D}$(s-tθ-tω),存在T(ετω$ \mathscr{D}$)>0,k(ετω$ \mathscr{D}$)≥1,使得

       构造一个光滑函数ρ(s)∈C1([0,∞),[0, 1]),且当|s|≤1时,ρ=0;当|s|≥2时,ρ=1. 易知,存在常数C0,使得对任意s$ \mathbb{R}$,有|ρ′(s)|≤C0. 令$ \widetilde{ \boldsymbol{\varphi }}={{(\tilde{u}, \tilde{v})}^{\text{T}}}=\left( {{(\tilde{u})}_{i}}, {{(\tilde{v})}_{i}} \right)_{i\in \mathbb{Z}}^{\text{T}}$,其中$(\tilde{u})_i= $$ \rho\left(\frac{|i|}{k}\right) u_i, (\tilde{v})_i=\rho\left(\frac{|i|}{k}\right) v_i, \tilde{\boldsymbol{\varphi}}(r)$与(12)式做内积(·,·)E

    易证

    则有

    其中C1C2为常数,将(29)-(31)式代入(28)式可知,

    对(32)式运用Gronwall引理可得

    由于φs-t$ \mathscr{D}$(s-tθ-tω)(sτ),结合(10)式可得

    由(8)式知,存在C(ω)>0,使$\mathrm{e}^{\frac{\mu r}{4}}\left|z\left(\theta_{r-s} \omega\right)\right| \leqslant C(\omega) $,结合引理1,(A3)和(21)式可知,存在T>0,当t>T时有

    因此,结合(23)式和(34)-(37)式可得,对任意的ε>0,(τω$ \mathscr{D}$)∈($ \mathbb{R}$×Ω×$ \mathfrak{D}$),φs-t$ \mathscr{D}$(s-tθ-tω),存在T(ετω$ \mathscr{D}$)>0,k(ετω$ \mathscr{D}$)≥1,使得

    引理3   若假设(A1),(A2),(A3)成立,则协循环{Φ(t)}t≥0在吸收集$ \mathscr{K}$$ \mathfrak{D}$上是后向渐近紧的.

      对任意固定的τ$ \mathbb{R}$ωΩ,取任意序列τkτtk→+∞(k→+∞),及任意的φ0$ \mathscr{K}$(τk-tkθ-tkω). 定义φk=Φ(tkτk-tkθ-tkωφ0,k)=φ(τkτk-tkθ-τkωφ0,k),φ0,k$ \mathscr{D}$(τk-tkθ-tkω),对∀ε>0,由引理2可知存在kεNε,当kkε时,有

    由引理1,φkE中有界,从而{(φki)|i|≤Nε}k$ \mathbb{R}$2Nε+1中有界,故{(φki)|i|≤Nε}k$ \mathbb{R}$2Nε+1中有一个有限的ε-网,结合(38)式可知{φk}在E中有一个有限的2ε-网,从而{φk}在E中是预紧的,即证得协循环{Φ(t)}t≥0在吸收集$ \mathscr{K}$上是后向渐近紧的.

  • 定义1   一个非自治的随机紧集$ \mathscr{A}$$ \mathfrak{D}$称为关于非自治协循环Φ$ \mathfrak{D}$-随机吸引子,若

    (i) $ \mathscr{A}$是不变的,即Φ(tτω)$ \mathscr{A}$(τω)=$ \mathscr{A}$(t+τθtω),t>0;

    (ii) $ \mathscr{A}$在hausdorff半距离意义下是吸收的,即对任意$ \mathscr{D}$$ \mathfrak{D}$

    定义2   集合$ \mathscr{A}$={$ \mathscr{A}$(τω)}称为后向紧的当$ \mathscr{A}$是紧的且∪sτ$ \mathscr{A}$(sω)(τ$ \mathbb{R}$ωΩ)是预紧的.

    定理1   若假设(A1),(A2),(A3)成立,则方程(1)生成的动力系统存在后向紧随机吸引子.

      由文献[13](定理3.9)可知方程(9)生成的非自治随机动力系统Φ(t)存在唯一的后向紧$ \mathfrak{D}$-拉回吸引子$ \mathscr{A}$$ \mathfrak{D}$和唯一的可测$ \mathfrak{D}$0-拉回吸引子$ \mathscr{A}$0$ \mathfrak{D}$0. 再由文献[13](定理6.1)知$ \mathscr{A}$=$ \mathscr{A}$0,故吸引子$ \mathscr{A}$也是随机的,即Φ(t)存在唯一的后向紧$ \mathfrak{D}$-拉回随机吸引子$ \mathscr{A}∈\mathscr{D}$. 由文献[6, 15]可知方程(1)与方程(9)生成的随机动力系统共轭,从而方程(1)存在后向紧随机吸引子.

参考文献 (15)

目录

/

返回文章
返回