留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

乘法噪音下Kuramoto-Sivashinsky方程的后向紧随机奇拉回吸引子

上一篇

下一篇

夏欢, 李扬荣. 乘法噪音下Kuramoto-Sivashinsky方程的后向紧随机奇拉回吸引子[J]. 西南师范大学学报(自然科学版), 2023, 48(5): 22-29. doi: 10.13718/j.cnki.xsxb.2023.05.003
引用本文: 夏欢, 李扬荣. 乘法噪音下Kuramoto-Sivashinsky方程的后向紧随机奇拉回吸引子[J]. 西南师范大学学报(自然科学版), 2023, 48(5): 22-29. doi: 10.13718/j.cnki.xsxb.2023.05.003
XIA Huan, LI Yangrong. The Backward Compact Random Odd Pullback Attractor of The Kuramoto-Sivashinsky Equation Under Multiplicative Noise[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(5): 22-29. doi: 10.13718/j.cnki.xsxb.2023.05.003
Citation: XIA Huan, LI Yangrong. The Backward Compact Random Odd Pullback Attractor of The Kuramoto-Sivashinsky Equation Under Multiplicative Noise[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(5): 22-29. doi: 10.13718/j.cnki.xsxb.2023.05.003

乘法噪音下Kuramoto-Sivashinsky方程的后向紧随机奇拉回吸引子

  • 基金项目: 国家自然科学基金项目(12271444)
详细信息
    作者简介:

    夏欢,硕士研究生,主要从事无穷维随机动力系统与随机分析的研究 .

    通讯作者: 李扬荣,博士生导师,教授
  • 中图分类号: O193

The Backward Compact Random Odd Pullback Attractor of The Kuramoto-Sivashinsky Equation Under Multiplicative Noise

  • 摘要: 在由奇函数构成的勒贝格空间上研究了带有彩色系数和乘法噪音的随机Kuramoto-Sivashinsky方程对应解的长时间动力行为. 在外力是后向缓增的假设下,利用桥函数和彩色噪音的性质对方程的解进行了后向一致估计,由此构造一个后向一致吸收集,并证明了协循环的后向渐近紧性. 最后利用吸引子的存在性定理证明了后向紧奇拉回吸引子的存在性及其可测性.
  • 加载中
  • [1] KURAMOTO Y, TSUZUKI T. On the Formation of Dissipative Structures in Reaction-Diffusion Systems: Reductive Perturbation Approach[J]. Progress of Theoretical Physics, 1975, 54(3): 687-699. doi: 10.1143/PTP.54.687
    [2] MICHELSON D. Steady Solutions of the Kuramoto-Sivashinsky Equation[J]. Physica D: Nonlinear Phenomena, 1986, 19(1): 89-111. doi: 10.1016/0167-2789(86)90055-2
    [3] doi: http://www.xueshufan.com/publication/3126097342 HE J, GRANERO-BELINCHÓN R. On the Dynamics of 3D Electrified Falling Films[J]. Discrete & Continuous Dynamical Systems-A, 2021, 41(9): 1553-5231.
    [4] AMBROSE D M, HADADIFARD F, DOUGLAS WRIGHT J. Well-Posedness and Asymptotics of a Coordinate-Free Model of Flame Fronts[J]. SIAM Journal on Applied Dynamical Systems, 2021, 20(4): 2261-2294. doi: 10.1137/20M1370793
    [5] LI Y R, YANG S, ZHANG Q H. Odd Random Attractors for Stochastic Non-Autonomous Kuramoto-Sivashinsky Equations without Dissipation[J]. Electronic Research Archive, 2020, 28(4): 1529-1544. doi: 10.3934/era.2020080
    [6] doi: http://www.researchgate.net/publication/327334095_Averaging_principle_for_stochastic_Kuramoto-Sivashinsky_equation_with_a_fast_oscillation GAO P. Averaging Principle for Stochastic Kuramoto-Sivashinsky Equation with a Fast Oscillation[J]. Discrete & Continuous Dynamical Systens-A, 2018, 38(11): 5649-5684.
    [7] LIN L, LI M. The Asymptotic Behavior of the Stochastic Coupled Kuramoto-Sivashinsky and Ginzburg-Landau Equations[J]. Boundary Value Problems, 2020, 2020(1): 1-14. doi: 10.1186/s13661-019-01311-5
    [8] 李勇, 张强恒, 李扬荣. 非自治随机时滞广义Kuramoto-Sivashinsky方程的拉回随机吸引子[J]. 西南大学学报(自然科学版), 2021, 43(2): 95-102. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202102013.htm
    [9] 乔闪闪, 李扬荣. 随机Kuramoto-Sivashinsky格点方程的后向紧随机吸引子[J]. 西南师范大学学报(自然科学版), 2022, 47(8): 48-53. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2022.08.007
    [10] GESS B, LIU W, SCHENKE A. Random Attractors for Locally Monotone Stochastic Partial Differential Equations[J]. Journal of Differential Equations, 2020, 269(4): 3414-3455. doi: 10.1016/j.jde.2020.03.002
    [11] TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 1988.
    [12] LI Y R, YANG S. Backward Compact and Periodic Random Attractors for Non-Autonomous Sine-Gordon Equations with Multiplicative Noise[J]. Communications on Pure & Applied Analysis, 2019, 18(3): 1155-1175.
    [13] doi: http://www.researchgate.net/publication/331622104_Backward_compactness_and_periodicity_of_random_attractors_for_stochastic_wave_equations_with_varying_coefficients WANG R H, LI Y R. Backward Compactness and Periodicity of Random Attractors for Stochastic Wave Equations with Varying Coefficients[J]. Discrete & Continuous Dynamical Systems-B, 2019, 24(8): 4145-4167.
    [14] YANG D S. Dynamics for the Stochastic Nonlocal Kuramoto-Sivashinsky Equation[J]. Journal of Mathematical Analysis and Applications, 2007, 330(1): 550-570. doi: 10.1016/j.jmaa.2006.07.091
    [15] doi: http://www.onacademic.com/detail/journal_1000035057558610_a541.html WANG B X. Sufficient and Necessary Criteria for Existence of Pullback Attractors for Non-Compact Random Dynamical Systems[J]. Journal of Differential Equations, 2012, 253(5): 1544-1583.
  • 加载中
计量
  • 文章访问数:  2382
  • HTML全文浏览数:  2382
  • PDF下载数:  234
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-24
  • 刊出日期:  2023-05-20

乘法噪音下Kuramoto-Sivashinsky方程的后向紧随机奇拉回吸引子

    通讯作者: 李扬荣,博士生导师,教授
    作者简介: 夏欢,硕士研究生,主要从事无穷维随机动力系统与随机分析的研究
  • 西南大学 数学与统计学院,重庆 400715
基金项目:  国家自然科学基金项目(12271444)

摘要: 在由奇函数构成的勒贝格空间上研究了带有彩色系数和乘法噪音的随机Kuramoto-Sivashinsky方程对应解的长时间动力行为. 在外力是后向缓增的假设下,利用桥函数和彩色噪音的性质对方程的解进行了后向一致估计,由此构造一个后向一致吸收集,并证明了协循环的后向渐近紧性. 最后利用吸引子的存在性定理证明了后向紧奇拉回吸引子的存在性及其可测性.

English Abstract

  • 文献[1-2]引入了有周期边界的一维确定型Kuramoto-Sivashinsky(K-S)方程作为反应扩散系统中湍流和波传播的一维模型. 文献[3-4]研究了确定型K-S方程. 文献[5-9]和文献[10]分别研究了Wiener噪音和Lévy噪音下的随机K-S方程. 本文主要研究带有乘法噪音和彩色系数的随机K-S方程

    其中$ t \geqslant \tau \in \mathbb{R}$α>0,$ D=\frac{\partial}{\partial x}$f是依赖于时间和空间的外力项. $W_t=W(t, \omega) $是概率空间(Ω$\mathscr{F} $P)上的双边实值Wiener过程,$z\left(\theta_t \omega\right) $是一个彩色噪音,$\alpha u \circ \mathrm{d} W_t $表示Stratonovich积分意义下的乘法噪音.

    设状态空间为

    本文主要研究其对应的奇空间

    上的后向紧拉回随机吸引子的存在性. 勒贝格空间H0被赋予通常的L2范数

    $ H_{\mathrm{per}}^2(G)$G上由周期函数构成的索伯列夫空间,记$ V=\dot{H}_{\mathrm{per}}^2(G)=H \cap H_{\mathrm{per}}^2(G)$,其奇空间为V0=H0$H_{\mathrm{per}}^2(G) $. 索伯列夫空间V0上的范数为$\|u\|_{v_0}=\left\|D^2 u\right\|_{H_0} $,内积为$(u, v)_{V_0}=\int_G D^2 u \cdot D^2 v \mathrm{~d} x $(见文献[11]).

    令(Ω$ \mathscr{F}$P)为标准的Wiener空间,其中

    $ \mathscr{F}$Ω上由紧开拓扑诱导的博雷尔-σ代数. P是(Ω$ \mathscr{F}$)上的双边Wiener测度. $ \left\{\theta_t: \varOmega \longrightarrow \varOmega\right\}$为一族保测自变换,$ \theta_t w(\cdot)=\omega(t+\cdot)-w(t)$. 于是得到一个遍历度量动力系统(Ω$ \mathscr{F}$P,(θt)$ t \in \mathbb{R}$). 取W(t,·)是恒同算子,即满足W(tω)=ω(t),$ \forall \omega \in \varOmega$(见文献[5, 12-14]).

    对于非自治动力系统(1),为了研究其长时间动力行为,我们关注其生成的拉回随机吸引子$ \mathscr{A}(\tau, \omega)$(见文献[12, 15]). 由于在H0V0上,方程(1)的解满足$u(t, -x)=-u(t, x) $,因此$\mathscr{A}(\tau, \omega)$由奇函数组成,这样的吸引子被称为奇吸引子. 在本节,我们取集族$ \mathfrak{B}$H0中所有后向缓增的双参数集$\mathscr{B} $构成,其中$\mathscr{B} $

    此外称双参数集$\mathscr{B} $是后向紧的,如果$\mathscr{B} $是紧的并且对每个时间$ \tau \in \mathbb{R}$和样本ωΩ$ \bigcup\limits_{s \leqslant \tau} \mathscr{B}(s, \omega)$是预紧的. 这样的$\mathscr{B} $对应生成的$ \mathfrak{B}$-拉回随机吸引子称为后向紧随机拉回吸引子.

    我们考虑如下的变量变换:

    其中$-\frac{a_1}{{\rm{ \mathsf{ π} }}} \sum\limits_{k=1}^M \frac{1}{k} \sin \frac{2 k {\rm{ \mathsf{ π} }} x}{l}=\xi(x) \in \dot{C}^{\infty}(-l, l) $H0V0之间的桥函数,$M=M\left(a_1, a_2, l\right)>0 $是一个足够大的数. 显然ξ(x)是奇函数,且对任意a1a2>0,wV0[5]

    随机变量$ z\left(\theta_t \omega\right)=-\int_{-\infty}^0 \mathrm{e}^s \cdot \theta_t \omega(s) \mathrm{d} s$是一维随机微分方程$\mathrm{d} z+z \mathrm{~d} t=\mathrm{d} W(t) $的稳定解,被称为Ornstein-Uhlenbeck(O-U)过程或彩色噪音,有如下性质(见文献[5, 12-13]):存在θ-不变满测集$\widetilde{\varOmega} \in \varOmega $,使得对任意$\omega \in \widetilde{\varOmega} $,有$t \longrightarrow z\left(\theta_t \omega\right) $连续,且对任意λ>0,有

    对任意$ \omega \in \widetilde{\varOmega}$(仍记$ \widetilde{\varOmega}=\varOmega$),方程(1)在(2)式的变换下可重记为关于$v\left(t, \tau, \omega, v_\tau(x)\right) $的方程

    引理1   对$ f \in L_{\text {loc }}^2\left( { \mathbb{R}, } H_0\right)$和任意的vτH0$ \tau \in \mathbb{R}$ωΩ,方程(5)在H0中存在唯一的弱解$ v\left(s, \tau, \omega, v_\tau\right)$满足$v\left(\cdot, \tau, \omega, v_\tau\right) \in C\left(\tau, +\infty ; H_0\right) \cap L_{\text {loc }}^2\left(\tau, +\infty ; V_0\right), v\left(\tau, \tau, \omega, v_\tau\right)=v_\tau \in H_0 $. 此外,$\tau\left(s, \tau, \omega, v_\tau\right) $连续依赖于sτvτ,且关于样本ωΩ可测.

    类似文献[3-5, 7],可以用标准的Faedo-Galerkin方法证明方程(5)在奇空间H0V0上解的适定性. 因此由方程(5)的解可以定义一个协循环Φ$ \mathbb{R}_{+} \times \mathbb{R} \times \varOmega \times H_0 \longrightarrow H_0$,使得对任意(tτωvτ)∈ $ \mathbb{R}_{+} \times \mathbb{R}$ ×Ω×H0,有

    其中初值$ u_\tau=\mathrm{e}^{\alpha z(\omega)}\left(v_\tau+\xi(x)\right)$. Φ关于tτuτ是三元连续的,且关于ωΩ是可测的.

  • 为了得到K-S方程(5)的解的后向一致估计,我们给出外力项f(tx)和噪音系数α的一些合理假设.

    假设1   存在某个常数c0 < +∞,使得噪音系数0 < αc0.

    事实上,α可以看作一个控制方程(1)中噪音项增长速度的常数. 若没有特殊说明,c为任意常数.

    假设2   $f \in L_{\mathrm{loc}}^2\left(\mathbb{R}, H_0\right) $是后向缓增的,即对任意λ>0,τ$\mathbb{R} $,有

    显然F(λ,·)是增函数. 若f后向缓增,则f是缓增的,且

    引理2    若假设1、假设2成立,则对任意的τ$\mathbb{R} $ωΩ$\mathscr{B} $ ={ $\mathscr{B} $ (τω)}∈ $ \mathfrak{B}$,存在T=T($\mathscr{B} $τω),使得

    对所有tTus-t$\mathscr{B} $ $\left(s-t, \theta_{-t} \omega\right) $一致成立. 其中

       在方程(5)两端同时乘$2 v\left(r, s-t, \theta_{-s} \omega, v_{s-t}\right) $,并关于xG积分,有

    $\|\cdot\|_{H_0}=\|\cdot\| $. 利用Young不等式$a b \leqslant \frac{\eta a^2}{4}+\frac{b^2}{\eta}(\forall \eta>0) $和Gagliardo-Nirenberg插值不等式$ \|D u\|_{L^2} \leqslant\|u\|_{L^2}^{\frac{1}{2}} \cdot\left\|D^2 u\right\|_{L^2}^{\frac{1}{2}}$,得到

    再由分部积分法,有$ 2(\xi D v, v)=-(v D \xi, v)$,于是$2(D(\xi v), v)=(v D \xi, v) $. 下面由假设1和ξ的连续性对(10)式的右边项进行估计:

    则(10)式可放缩为

    在(3)式中取$ a_1=\frac{2}{\eta}+4+2 \alpha(E|z|+1)>0$$a_2=\frac{\eta}{2}>0 $,于是(11)式可转化为

    由(4)式知$ 1+2 \alpha(E|z|+1)=\beta<+\infty$. 将(12)式乘$ \mathrm{e}^{\beta(r-(s-t))-\int_{s-t}^r 2 \alpha\left|z\left(\theta_{\tilde{r}-s} \omega\right)\right| \mathrm{d} \tilde{r}}$并关于r∈[s-ts]积分,有

    通过变换$ u(s)=u\left(s, s-t, \theta_{-s} \omega, u_{s-t}\right)=\mathrm{e}^{\alpha z(\omega)}\left(v\left(s, s-t, \theta_{-s} \omega, v_{s-t}\right)+\xi\right)$,并借助(a+b)2≤2a2+2b2,有

    其中$ \left\|v_{s-t}\right\|^2 \leqslant c \mathrm{e}^{-2 \alpha z(\theta_{-t} \omega)}\left\|u_{s-t}\right\|^2+c$Iff的相关项,I1f的无关项.

    由(4)式,存在某个T0=T0(ω)>0,使得对任意tT0,有

    于是

    又根据$ \lim \limits_{t \rightarrow+\infty} \frac{\left|z\left(\theta_{-t} \omega\right)\right|}{|-t|}=0$,于是对任意ε>0,存在某个T1,使得当tT1>0时有

    若取$\varepsilon=\frac{1}{4 \alpha} $,则$-2 \alpha z\left(\theta_{-t} \omega\right)<2 \alpha \varepsilon t=\frac{t}{2} $,从而当t +∞时,$ \mathrm{e}^{-t} \mathrm{e}^{-2 \alpha z(\theta_{-t} \omega)}<\mathrm{e}^{-\frac{t}{2}} \rightarrow 0$. 结合$u_{s-t} \in \mathscr{B}\left(s-t, \theta_{-t} \omega\right) $,有$\sup \limits_{s \leqslant \tau} \mathrm{e}^{-t} \mathrm{e}^{-2 \alpha z(\theta_{-t} \omega)}\left\|u_{s-t}\right\|^2 \leqslant \sup \limits_{s \leqslant \tau} \mathrm{e}^{-\frac{t}{2}}\left\|\mathscr{B}\left(s-t, \theta_{-t} \omega\right)\right\|^2 \leqslant 1 $,因此将(14)式关于sτ取上确界后,对任意$ t \geqslant T=\max \left\{T_0, T_1\right\}$,结合(15)式可找到变量R0(ω)控制I1

    最后证明If可由变量R1(τω)控制. 为了统一,我们仍对时间sτ取上确界

    综合(17)和(18)式即证得解$u\left(t, \tau, \omega, u_\tau\right) $的后向一致估计(7)式.

    推论1    根据(13)和(14)式,对任意ωΩτ$\mathbb{R} $,有

    在(12)式两边同时乘$\mathrm{e}^{\beta(r-(s-t))-\int_{s-t}^r 2 \alpha\left|z\left(\theta_{\tilde{r}-s} \omega\right)\right| \mathrm{d} \tilde{r}} $,并关于r∈[s-tσ]积分,(其中s-1≤σst≥1),得

    根据$u_{s-t} \in \mathscr{B}\left(s-t, \theta_{-t} \omega\right), \int_{-t}^0 \mathrm{e}^r\left|z\left(\theta_r \omega\right)\right|^2 \mathrm{~d} r \rightarrow 0(t \rightarrow+\infty) $及以下估计

    我们可以得到

    命题1   协循环Φ有一个$ \mathfrak{B}$ -拉回吸收集$\mathscr{K} $,由如下形式给定:

    其中R0(ω),R1(τω)分别由(8)和(9)式给出. 并且$ \mathscr{K}=\{\mathscr{K}(\tau, \omega)\} \in$$ \mathfrak{B}$是一个后向吸收集,即对任意$\mathscr{B} $$ \mathfrak{B}$τ$\mathbb{R} $ωΩ,存在T=T(τω$\mathscr{B} $),使得对于任意tT,有

       首先证明$\mathscr{K}=\{\mathscr{K}(\tau, \omega)\} \in \mathfrak{B} $. 由于$z\left(\theta_t \omega\right) $是随机变量,则R0(ω)是随机变量. 由(15)式,对每个ωΩ,有R0(ω) < +∞成立. 另外,由于R0(ω)与变量τ无关,因此只需证R0(ω)是缓增的.

    不失一般性地,我们假设0 < μ≤e-t∧4α,因此有$\beta=2 \alpha(E|z|+1)+1 \geqslant 2 \alpha\left(E|z|+\frac{\mu}{4 \alpha}\right) $以及

    由(4)式有

    因此

    在(16)式中取$ \varepsilon=\frac{\mu}{16 \alpha}<1$,于是$2 \alpha\left|z\left(\theta_{-t} \omega\right)\right|<2 \alpha \varepsilon t=\frac{\mu}{8} t $. 因此对于任意tT1,有

    从而证得R0(ω)是后向缓增的. 根据$ \mathscr{F}(\lambda, \cdot)$的单调性有$\sup \limits_{s<\tau} R_1\left(s-t, \theta_{-t} \omega\right)=R_1\left(\tau-t, \theta_{-t} \omega\right) $,同时利用(24),(16)式和假设1、假设2,对任意tT1,有

    由(26)式即证R1(τω)是后向缓增的. 最后由引理2,对任意tT=max{T0T1},有

    这意味着$ \mathscr{K} \in \mathfrak{B}$. 借助F(λ,·)的单调递增性质可以得到$ \bigcup\limits_{s \leqslant \tau} R_1(s, \omega)=R_1(\tau, \omega)$. 于是由(21)式中吸收集的构造知$ \bigcup\limits_{s \leqslant \tau} \mathscr{K}(s, \omega)=\mathscr{K}(\tau, \omega)$,即证$\mathscr{K} $是一个后向缓增的吸收集.

    为了得到吸引子,接下来我们对方程(5)在状态空间V0上的解进行后向一致估计.

    引理3    若假设1、假设2成立. 对任意sτ$\mathbb{R} $ωΩ$\mathscr{B}=\{\mathscr{B}(\tau, \omega): \tau \in \mathbb{R}, \omega \in \varOmega\} \in \mathfrak{B} $,存在T2=T2($\mathscr{B} $τω),使得对于每个tT2$ u_{s-t} \in \mathscr{B}\left(s-t, \theta_{-t} \omega\right)$,有$\left\|u\left(s, s-t, \theta_{-s} \omega, u_{s-t}\right)\right\|_{V_0}^2<+\infty $.

       将方程(5)两端同时与2D4v(rs-tθ-sωvs-t)做内积,

    首先利用Young不等式和Gagliardo-Nirenberg插值不等式对(27)式中的某些项进行估计,

    再利用假设1和ξ(x)的连续性对(27)式的剩余项进行估计,

    综合上述估计可以得到不等式

    再根据微分形式的Gronwall引理,有

    根据变换(2)有D2u(s)=eαz(ω)·(D2v(s)+D2ξ(x)),其中$ \xi \in \dot{C}^{\infty}(-l, l)$,于是对任意sτ,有

    根据(20)式和$t \rightarrow \mathcal{z}\left(\theta_t \omega\right) $的连续性知,存在某个$ T_{J_1}=T_{J_1}(\mathscr{B}, \tau, \omega)$,对任意$t \geqslant T_{J_1} $

    由(15)式,存在c0使得$c_0 \mathrm{e}^{\beta r+2 \alpha \int_r^0\left|z\left(\theta_{\tilde{r}} \omega\right)\right| \mathrm{d} \tilde{r}} \geqslant 1 $. 因此存在$T_{J_2}=T_{J_2}(\mathscr{B}, \tau, \omega) $,使得对任意$ t \geqslant T_{J_2}$

    最后利用(19)式可对(29)式的剩余项进行估计,存在$T_{J_3}=T_{J_3}(\mathscr{B}, \tau, \omega) $,当$t \geqslant T_{J_3} $时,

    注意,对每个ωΩ,显然有$c \mathrm{e}^{2 \alpha|z(\omega)|}<+\infty $. 因此对任意的sτ$\mathbb{R} $ωΩ$ \mathscr{B} \in \mathfrak{B}$,总存在T2=T2($\mathscr{B} $τω)= $\max \left\{T_{J_1}, T_{J_2}, T_{J_3}\right\} $,使得对任意tT2$\left\|D^2 u(s)\right\|{ }_{H_0}^2<+\infty $.

  • 定理1    令噪音系数α满足假设1,外力项$f \in L_{\mathrm{loc}}^2\left(\mathbb{R}, H_0\right) $H0)满足假设2. 在状态空间X=H0上,由K-S方程(5)生成的协循环Φ存在一个后向紧随机奇拉回吸引子$\mathscr{A}_{\mathscr{B}}$$ \mathfrak{B}$.

       后向吸收集$\mathscr{K}=\mathscr{K}(\tau, \omega) \in \mathfrak{B} $的存在性见命题1. 下面证明Φ$\mathfrak{B} $ -拉回渐近紧的. 对于固定的$(\tau, \omega, \mathscr{B}) \in \mathbb{R} \times \varOmega \times \mathfrak{B} $,取任意序列{sk},skτ$t_k \rightarrow+\infty $,并定义

    引理3已证$\left\{u_k: k \in \mathbb{N}\right\} $V0中有界,再根据V0紧嵌入H0$\left\{u_k: k \in \mathbb{N}\right\} $H0中有收敛子列,即序列$ \left\{u_k: k \in \mathbb{N}\right\}$H0中是预紧的.

    接下来证明后向紧的奇拉回吸引子$\mathscr{A}_{\mathscr{B}}$的存在性. 在(22)式中取s=τ,于是有Φ(tτ-tθ-tω$\mathscr{B} $ (τ-tθ-tω)) $\subset \mathscr{K}(\tau, \omega) $$ \forall t \geqslant T(\mathscr{B})$$\mathscr{B} \in \mathfrak{B} $,即$\mathscr{K}(\tau, \omega) $是吸收集. 在(33)式中取sk=τ,则对应的序列$ \left\{u\left(\tau, \tau-t_k, \theta_{-\tau} \omega, u_{0, k}\right)\right\}$有收敛子列,即Φ是后向渐近紧的. 因此根据文献[15]的吸引子存在定理可得$\mathscr{A}_{\mathscr{B}}$存在,且由ω-极限集构成,

    并且$\mathscr{A}_{\mathscr{B}}$ (τω)是后向紧的,即对任意τ$\mathbb{R} $ωΩ$ \bigcup\limits_{s \leqslant \tau} \mathscr{A}(s, \omega)$是预紧的(证明见文献[5, 12-13]). 因此$\mathscr{A}_{\mathscr{B}}$可以重记为(34)式的后向形式

    最后证明$\mathscr{A}_{\mathscr{B}}$是随机吸引子. 我们考虑$\mathscr{D}=\{\mathscr{D}(\tau, \omega)\} $为通常的缓增集,类似于文献[5]可证$\mathscr{A}_{\mathscr{D}} $的存在性. 由于可测集的任意交(或任意并)仍然是可测集,则由吸收集$ \mathscr{K}_{\mathscr{D}}$的可测性得到$\mathscr{A}_{\mathscr{D}}(\tau, \omega)=\bigcap\limits_{T>0} $ $ \overline{\bigcup\limits_{t \geqslant T} \varPhi\left(t, \tau-t, \theta_{-t} \omega\right) \mathscr{K}_{\mathscr{D}}}$仍是可测集. 最后根据$\mathscr{A}_{\mathscr{B}}$与随机吸引子$\mathscr{A}_{\mathscr{D}}$是等价的(证明见文献[3]),就得到$\mathscr{A}_{\mathscr{B}}$的可测性.

参考文献 (15)

目录

/

返回文章
返回