留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

有限体积法定价欧式跳扩散期权模型

上一篇

下一篇

甘小艇. 有限体积法定价欧式跳扩散期权模型[J]. 西南师范大学学报(自然科学版), 2018, 43(11): 1-7. doi: 10.13718/j.cnki.xsxb.2018.11.001
引用本文: 甘小艇. 有限体积法定价欧式跳扩散期权模型[J]. 西南师范大学学报(自然科学版), 2018, 43(11): 1-7. doi: 10.13718/j.cnki.xsxb.2018.11.001
GAN Xiao-ting. Finite Volume Method for Pricing European Options under Jump-Diffusion Model[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 1-7. doi: 10.13718/j.cnki.xsxb.2018.11.001
Citation: GAN Xiao-ting. Finite Volume Method for Pricing European Options under Jump-Diffusion Model[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 1-7. doi: 10.13718/j.cnki.xsxb.2018.11.001

有限体积法定价欧式跳扩散期权模型

Finite Volume Method for Pricing European Options under Jump-Diffusion Model

  • 摘要: 考虑有限体积法求解Kou跳扩散期权定价模型.基于线性有限元空间,构造了向后Euler和Crank-Nicolson两种全离散有限体积格式,并结合简单高效的递推公式逼近方程中的积分项.理论分析表明所得的离散矩阵为M-矩阵.数值实验验证了方法的有效性.
  • 加载中
  • [1] BLACK F,SCHOLES M. The Pricing of Options and Corporate Liabilities[J].Journal of Political Economy,1973,81(3):637-654.
    [2] MERTON R C. Option Pricing When Underlying Stock Return Are Discontinuous[J].Journal of Financial Economics,1976,3(1):125-144.
    [3] KOU S G. A Jump-diffusion Model for Option Pricing[J]. Management Science,2002,48(8):1086-1101.
    [4] KOU S G,WANG H. Option Pricing under a Double Exponential Jump Diffusion Model[J]. Management Science,2004,50(7):1178-1198.
    [5] TAVELLA D,RANDALL C. Pricing Financial Instruments:The Finite Difference Method[M]. Chichester:John Wiley Sons, 2000.
    [6] ANDERSEN L,ANDREASEN J. Jump-Diffusion Processes:Volatility Smile Fitting and Numerical Methods for Option Pricing[J]. Review of Derivatives Research,2000,4(3):231-262.
    [7] D'HALLUIN Y,FORSYTH P A,LABAHN G. A Penalty Method for American Options with Jump Diffusion Processes[J]. Numerische Mathematik,2004,97(2):321-352.
    [8] D'HALLUIN Y,FORSYTH P A,VETZAL K R. Robust Numerical Methods for Contingent Claims Under Jump Diffusion Processes[J]. IMA Journal of Numerical Analysis,2005,25(1):87-112.
    [9] SALMI S,TOIVANEN J. An Iterative Method for Pricing American Options under Jump-diffusion Model[J]. Applied Numerical Mathematics,2011,61(7):821-831.
    [10] TOIVANEN J. Numerical Valuation of European and American Options Under Kou's Jump-diffusion Model[J]. SIAM Journal on Scientific Computing,2008,30(4):1949-1970.
    [11] ZHANG K,WANG S. A Computational Scheme for Options Under Jump Diffusion Processes[J]. International Journal of Numerical Analysis and Modeling,2009,6(1):110-123.
    [12] 李海蓉. 美式期权定价的指数型差分格式分析[J].西南师范大学学报(自然科学版),2014,39(8):86-89.
    [13] 甘小艇,殷俊锋.二次有限体积法定价美式期权[J].计算数学,2015,37(1):67-82.
    [14] 甘小艇,殷俊锋,李蕊. 有限体积法定价跳扩散期权[J].同济大学学报(自然科学版),2016,44(9):1458-1465.
    [15] BAI Z Z. Modulus-Based Matrix Splitting Iteration Methods for Linear Complementarity Problems[J].Numerical Linear Algebra with Applications, 2010,17(6):917-933.
  • 加载中
计量
  • 文章访问数:  582
  • HTML全文浏览数:  353
  • PDF下载数:  14
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-10-19

有限体积法定价欧式跳扩散期权模型

  • 楚雄师范学院 数学与统计学院, 云南 楚雄 675000

摘要: 考虑有限体积法求解Kou跳扩散期权定价模型.基于线性有限元空间,构造了向后Euler和Crank-Nicolson两种全离散有限体积格式,并结合简单高效的递推公式逼近方程中的积分项.理论分析表明所得的离散矩阵为M-矩阵.数值实验验证了方法的有效性.

English Abstract

参考文献 (15)

目录

/

返回文章
返回