-
设X是自然数集
N 或整数集Z ,对∀x∈X,定义线性变换A (a,b):X⟶ X,x⟼ ax+b.即(x)A (a,b)=ax+b.令T X×X={A (a,b):∀a,b∈X}.于是,对∀x∈X,∀A (a,b),A (c,d),A (e,f)∈T X×X,在T X×X上定义运算“·”,使得即
A (a,b)·A (c,d)=A (ac,bc+d)∈T X×X.易证由此可见,
T X×X关于运算“·”是半群,称为X×X上的线性变换半群.为了方便,文中将省略运算“·”.对∀A (a,b),A (c,d)∈T X×X,有A (a,b)=A (c,d),当且仅当对∀x∈X,有(x)A (a,b)=(x)A (c,d),即ax+b=cx+d.由x的任意性可知,令x=0,可得b=d.再令x=1,必有a=c.显然有A (a,b)=A (c,d)当且仅当a=c和b=d.设S是半群,a,e∈S.若存在b∈S,使得a=aba,则称a是半群S的正则元.若e2=ee=e,则称e是半群S的幂等元.易见,半群S中的幂等元一定是正则元,但正则元不一定是幂等元.对∀a,b∈S,在半群S上定义等价关系:
L :aL b当且仅当存在x,y∈S1,使得xa=b,yb=a;R :aR b当且仅当存在x,y∈S1,使得ax=b,by=a;J :aJ b当且仅当存在x,y,u,v∈S1,使得xay=b,ubv=a;H =L ∩R ,D =L ∨R .众所周知,文献[1]刻划了
D =L ∘ R =R ∘ L 且D ⊆J .这5个等价关系统称为半群S上的格林关系,对半群的发展有着至关重要的作用.对于半群的格林关系,正则元及其幂等元的研究目前已有许多结果[1-7].文献[1]考虑了格林关系的来龙去脉,得到了更多的广义格林关系,使半群理论得到更进一步的发展.文献[2]获得了一类保序且压缩的部分有限变换半群的格林关系和正则元.文献[3-7]考虑了无限集上具有某些特殊等价关系的变换半群的格林关系和正则元.文献[8]获得了CPOn(A)的格林关系.文献[9]获得了关于幂等元格林关系劣化的注记.文献[10]获得了保等价关系的变换半群的组合结果.
全文HTML
-
下面讨论线性变换半群
T N ×N 的格林关系、正则元及幂等元.首先刻划半群T N ×N 的格林关系L .定理1 对∀
A (a,b),A (c,d)∈T N ×N ,下列条件等价:(ⅰ)
A (a,b)L A (c,d);(ⅱ)
A (a,b)=A (c,d).证 (ⅰ)
⇒ (ⅱ) 若A (a,b)L A (c,d),则存在A (x,y),A (u,v)∈T N ×N ,使得A (x,y)A (a,b)=A (c,d)且A (u,v)A (c,d)=A (a,b),即A (xa,ya+b)=A (c,d)且A (uc,vc+d)=A (a,b),进而有xa=c且uc=a,可得a|c且c|a,即a=c.注意到ya+b=d且vc+d=b.若a=0,则a=c=0且b=d.若a>0,必有(y+v)a=ya+va=ya+vc=(d-b)+(b-d)=0,可知y+v=0.由y,v∈N 可得y=v=0.再由ya+b=d可知b=d.因此A (a,b)=A (c,d).(ⅱ)
⇒ (ⅰ) 若A (a,b)=A (c,d),则存在A (1,0)∈T N ×N ,使得A (1,0)A (a,b)=A (a,b)=A (c,d)且A (1,0)A (c,d)=A (c,d)=A (a,b),即A (a,b)L A (c,d).对偶地,便得到如下定理:
定理2 对∀
A (a,b),A (c,d)∈T N ×N ,下列条件等价:(ⅰ)
A (a,b)R A (c,d);(ⅱ)
A (a,b)=A (c,d).结合定理1和定理2立即得到如下推论:
推论1 对∀
A (a,b),A (c,d)∈T N ×N ,则:(ⅰ)
A (a,b)H A (c,d)当且仅当A (a,b)=A (c,d);(ⅱ)
A (a,b)D A (c,d)当且仅当A (a,b)=A (c,d).定理3 对∀
A (a,b),A (c,d)∈T N ×N ,下列条件等价:(ⅰ)
A (a,b)J A (c,d);(ⅱ)
A (a,b)=A (c,d).证 (ⅰ)
⇒ (ⅱ) 若A (a,b)J A (c,d),则存在A (x,y),A (u,v),A (p,q),A (e,f)∈T N ×N ,使得A (x,y)A (a,b)A (u,v)=A (ax,ay+b)A (u,v)=A (axu,ayu+bu+v)=A (c,d)且A (p,q)A (c,d)A (e,f)=A (pc,cq+d)A (e,f)=A (pce,ceq+de+f)=A (a,b),进而有axu=c且pce=a,可知a|c且c|a,即a=c且x=u=e=p=1.再由ceq+de+f=b且ayu+bu+v=d可知aq+d+f=b且ay+b+v=d,必有aq+f=b-d且ay+v=d-b,进一步有aq+f+ay+v=0.注意到a,q,f,y,v∈N ,可得aq=f=ay=v=0.再由d-b=ay+v=0+0=0可知b=d.于是A (a,b)=A (c,d).(ⅱ)
⇒ (ⅰ) 若A (a,b)=A (c,d),则存在A (1,0)∈T N ×N ,使得A (1,0)A (a,b)A (1,0)=A (a,b)=A (c,d)且A (1,0)A (c,d)A (1,0)=A (c,d)=A (a,b),即A (a,b)J A (c,d).由定理1、定理2、推论1及定理3立即有如下推论:
推论2 在半群
T N ×N 上,有H =L =R =D =J .定理4 对∀
A (a,b)∈T N ×N ,下列条件等价:(ⅰ)
A (a,b)是幂等元;(ⅱ) a=0,b∈
N ,或a=1,b=0.证 (ⅰ)
⇒ (ⅱ) 若A (a,b)是幂等元,有A (a,b)2=A (a,b)A (a,b)=A (a2,ab+b)=A (a,b),则a2=a且a∈N ,必有a=1或a=0.当a=1时,由ab+b=b可知b=0;当a=0时,由ab+b=b可得b∈N .(ⅱ)
⇒ (ⅰ) 若a=0,b∈N ,则A (0,b)2=A (0,b)A (0,b)=A (0,b).若a=1,b=0,则A (1,0)2=A (1,0)A (1,0)=A (1,0).由此可见,A (0,b)和A (1,0)都是幂等元.结合定理3(ⅱ)以及定理4立即得到如下定理:
定理5 对∀
A (a,b)∈T N ×N ,下列条件等价:(ⅰ)
A (a,b)是T N ×N 上的正则元;(ⅱ) a=0,b∈
N ,或a=1,b=0.把定理4及定理5结合起来便得到如下推论:
推论3 对∀
A (a,b)∈T N ×N ,则A (a,b)是正则元当且仅当A (a,b)是幂等元,即A (a,b)2=A (a,b)当且仅当a=0,b∈N ,或a=1,b=0.
-
这里讨论线性变换半群
T Z ×Z 的格林关系、正则元及幂等元.首先刻划半群T Z ×Z 的格林关系R.定理6 对∀
A (a,b),A (c,d)∈T Z ×Z ,则下列条件等价:(ⅰ)
A (a,b)R A (c,d);(ⅱ) a=±c.
证 (ⅰ)
⇒ (ⅱ) 若A (a,b)R A (c,d),则存在A (i,j),A (s,t)∈T Z ×Z ,使得A (a,b)A (i,j)=A (c,d)且A (c,d)A (s,t)=A (a,b),即A (ai,bi+j)=A (c,d)且A (cs,ds+t)=A (a,b),进而有ai=c且cs=a,可知a|c且c|a,即a=±c.(ⅱ)
⇒ (ⅰ)当a=c时,存在A (1,d-b),A (1,b-d)∈T Z ×Z ,使得A (a,b)A (1,d-b)=A (a,d)=A (c,d)且A (c,d)A (1,b-d)=A (a,d)A (1,b-d)=A (a,b),即A (a,b)R A (c,d).当a=-c时,存在A (-1,d+b)∈T Z ×Z ,使得A (a,b)A (-1,b+d)=A (-a,d)=A (c,d)且A (c,d)A (-1,b+d)=A (-a,d)A (-1,b+d)=A (a,b),即A (a,b)R A (c,d).对偶地,便得到如下定理:
定理7 对∀
A (a,b),A (c,d)∈T Z ×Z ,下列条件等价:(ⅰ)
A (a,b)L A (c,d);(ⅱ) a=±c且a|(b-d).
结合定理6和定理7立即得到如下推论:
推论4 对∀
A (a,b),A (c,d)∈T Z ×Z ,有:(ⅰ)
A (a,b)H A (c,d)当且仅当a=±c且a|(b-d);(ⅱ)
A (a,b)D A (c,d)当且仅当a=±c.定理8 对∀
A (a,b),A (c,d)∈T Z ×Z ,下列条件等价:(ⅰ)
A (a,b)J A (c,d);(ⅱ) a=±c.
证 (ⅰ)
⇒ (ⅱ) 若A (a,b)J A (c,d),则存在A (x,y),A (u,v),A (p,q),A (e,f)∈T Z ×Z ,使得A (x,y)A (a,b)A (u,v)=A (ax,ay+b)A (u,v)=A (axu,ayu+bu+v)=A (c,d)且A (p,q)A (c,d)A (e,f)=A (cp,cq+d)A (e,f)=A (cep,ceq+de+f)=A (a,b),进而有axu=c且cep=a,可知a|c且c|a,即a=±c.(ⅱ)
⇒ (ⅰ)当a=±c时,由定理6可知A (a,b)R A (c,d).再结合A (a,b)L A (a,b)可得A (a,b)D A (c,d).再由D ⊆J 可知A (a,b)J A (c,d).由定理6、定理7、推论4及定理8可得如下推论:
推论5 在半群
T Z ×Z 上,有H =L ⫋ R =D =J .定理9 对∀
A (a,b)∈T Z ×Z ,下列条件等价:(ⅰ)
A (a,b)是幂等元;(ⅱ) a=0,b∈
Z ,或a=1,b=0.证 (ⅰ)
⇒ (ⅱ) 若A (a,b)是幂等元,有A (a,b)2=A (a,b)A (a,b)=A (a2,ab+b)=A (a,b),则a2=a且a∈Z ,必有a=1或a=0.当a=1时,由ab+b=b可知b=0;当a=0时,由ab+b=b可得b∈Z .(ⅱ)
⇒ (ⅰ) 若a=0,b∈Z ,必有A (0,b)2=A (0,b)A (0,b)=A (0,b).若a=1,b=0,可得A (1,0)2=A (1,0)A (1,0)=A (1,0).由此可见,A (0,b)和A (1,0)都是幂等元.结合定理7(ⅱ)以及定理9立即得到如下定理:
定理10 对∀
A (a,b)∈T Z ×Z ,下列条件等价:(ⅰ)
A (a,b)是正则元;(ⅱ) a=0,b∈
Z ,或a=1,b∈Z ,或a=-1,b∈Z .注1 在半群
T Z ×Z 中,幂等元是正则元,但正则元不一定是幂等元.