-
设[n]={1,2,…,n-1,n}(n≥4),并赋予自然数的大小序.
$\mathscr{I}$ n与$\mathscr{S}$ n分别表示[n]上的对称逆半群和对称群,$\mathscr{SI}$ n=$\mathscr{I}$ n\$\mathscr{S}$ n是[n]上的部分一一奇异变换半群.设α∈$\mathscr{SI}$ n,若对任意的x,y∈dom(α),由x≤y可推出xα≤yα,则称α是保序的.设$\mathscr{O}$ n为Tn中所有保序变换之集(不含[n]上的恒等变换),则$\mathscr{O}$ n是Tn的子半群,称$\mathscr{O}$ n为[n]上的保序变换半群;记$\mathscr{OI}$ n为保序对称逆半群$\mathscr{I}$ n\$\mathscr{S}$ n中所有保序变换之集,则$\mathscr{OI}$ n是$\mathscr{I}$ n\$\mathscr{S}$ n的逆子半群,称$\mathscr{OI}$ n为保序严格部分一一变换半群.设k是[n]上的一个固定点,令则称
$\mathscr{OI}$ nk为[n]上双边k型-保序严格部分一一变换半群.记易见
$\mathscr{OI}$ (n,r)k是$\mathscr{OI}$ nk的子半群,且对任意的α∈$\mathscr{OI}$ (n,r)k,β,γ∈$\mathscr{OI}$ (n,r)k,均有|im(βαγ)|≤r,即βαγ∈$\mathscr{OI}$ (n,r)k,因而$\mathscr{OI}$ (n,r)k是$\mathscr{OI}$ nk的双边理想.通常有限半群S的秩定义为rank(S)=min{|A|:A⊆S,〈A〉=S}.半群S及其子半群V之间的相关秩定义为r(S,V)=min{|A|:A⊆S,A∩V=ϕ,〈A∪V〉=S},易见r(S,S)=0.对于有限半群的秩及其相关秩的研究目前已有许多结果[1-13].文献[1]考虑了[n]上的保序有限部分一一奇异变换半群
$\mathscr{OI}$ n的理想$\mathscr{K}$ $\mathscr{O}$ (n,r)={α∈$\mathscr{OI}$ n:|im(α)|≤r}(0≤r≤n-1)的生成集和秩,确定了半群$\mathscr{K}$ $\mathscr{O}$ (n,r)的秩为Cnr.文献[2]考虑了半群$\mathscr{OI}$ n的m偏度秩存在时一定等于n.文献[3-5]考虑了几类不同保序变换半群的秩和相关秩.文献[6-11]研究了几类具有k型-特征的变换半群的秩.本文在文献[1-11]的基础上继续考虑双边k型-保序严格部分一一变换半群
$\mathscr{OI}$ nk的双边理想$\mathscr{OI}$ (n,r)k的秩和相关秩,证明了如下主要结果:定理1 设n≥3,0≤r≤n-1,则
$\mathscr{K}$ r是$\mathscr{OI}$ (n,r)k的生成集,即$\mathscr{OI}$ (n,r)k=〈rankr〉.定理2 设n≥3,0≤r≤n-1,则rank(
$\mathscr{OI}$ (n,r)k)=Cnr.定理3 设n≥3,0≤l≤r≤n-1,则
$r\left(\mathscr{O} \mathscr{I}_{(n, r)}^{k}, \mathscr{O} \mathscr{I}_{(n, l)}^{k}\right)=\left\{\begin{array}{ll}{0} &\;\;\;\;{l=r} \\ {C_{n}^{r}} & {0 \leqslant l < r}\end{array}\right.$ .
全文HTML
-
设A是自然序集[n]的非空子集,设α∈
$\mathscr{OI}$ (n,r)k,用im(α)表示α的象集,ker(α)表示dom(α)上的如下等价关系:ker(α)={(x,y)∈dom(α)×dom(α):xα=yα}.对任意的t∈im(α),tα-1表示t的原象集且|tα-1|=1.若|im(α)|=r,1≤r≤n-1,则由双边k型-保序性容易验证α有如下表示法:其中a1 < a2 < … < ai-1 < ai≤k < ai+1 < … < ar,b1 < b2 < … < bi-1 < bi≤k < bi+1 < … < br,易证α是正则元,且
$\mathscr{OI}$ nk是正则半群.易见对任意的i∈{1,2,…,r},当ai=bi时,α是半群$\mathscr{OI}$ nk的幂等元.为叙述方便,这里引用Green-等价关系,不难验证,在半群
$\mathscr{OI}$ (n,r)k中$\mathscr{L}$ ,$\mathscr{R}$ ,$\mathscr{D}$ ,$\mathscr{K}$ [1]有如下刻划:对任意的α,β∈$\mathscr{OI}$ (n,r)k,有(ⅰ) (α,β)∈
$\mathscr{L}$ 当且仅当im(α)=im(β);(ⅱ) (α,β)∈
$\mathscr{R}$ 当且仅当ker(α)=ker(β);(ⅲ) (α,β)∈
$\mathscr{D}$ 当且仅当|im(α)|=|im(β)|且|im(α)∩[1,k]|=|im(β)∩[1,k]|;(ⅳ) (α,β)∈
$\mathscr{K}$ 当且仅当|im(α)|=|im(β)|.易证
$\mathscr{K} = \mathop \cup \limits_{i = 1}^S {\mathscr{D}_i}$ ,其中$s = \left\{ {\begin{array}{*{20}{l}} {r + 1} & {k \ge r, n - k \ge r}\\ {n - k + 1} & {k \ge r, n - k < r}\\ {k + 1} & {k < r, n - k \ge r}\\ {n - r + 1} & {k < r, n - k < r} \end{array}} \right.$ 易见
$\mathscr{L}$ ⊆$\mathscr{K}$ ,$\mathscr{R}$ ⊆$\mathscr{K}$ .记$\mathscr{K}$ r={α∈$\mathscr{OI}$ (n,r)k:|im(α)|=r},0≤r≤n-1,1≤k≤n-1.显然$\mathscr{K}$ 0,$\mathscr{K}$ 1,$\mathscr{K}$ 2,…,$\mathscr{K}$ r-1,$\mathscr{K}$ r恰好是$\mathscr{OI}$ (n,r)k的r+1个$\mathscr{K}$ -类,不难验证$\mathscr{OI}_n^k = \bigcup\limits_{i = 1}^r {{\mathscr{K}_i}} $ 是具有包含关系$\mathscr{OI}$ (n,0)k⊂$\mathscr{OI}$ (n,1)k⊂…⊂$\mathscr{OI}$ (n,n-1)k=$\mathscr{OI}$ nk的双边理想链.定义1 用Xn(r)表示自然序集[n]={1,2,3,…,n-1,n}(n≥4)的所有r元子集,则Xn(r)中共有Cnr(其中Cnr表示从n个元素中取出r个元素的组合数)个元素.令t=Cnr,记Xn(r)={A1,A2,…,At},其中Ai={a1 < a2 < … < ai < … < ar},Ai⊆[n]且|Ai|=r(i=1,2,…,t-1,t).将Xn(r)按照不同
$\mathscr{D}$ 关系分类,记为[D]={A,D∈Xn(r):|A∩[1,k]|=|D∩[1,k]|}.进一步可证:对于任意的α,β∈ [D],其中$\alpha = \left({\begin{array}{*{20}{l}} {{A_i}}\\ {{A_j}} \end{array}} \right)$ ,$\beta = \left({\begin{array}{*{20}{l}} {{A_p}}\\ {{A_q}} \end{array}} \right)$ ,可知|Aj|=|Aq|且|Aj∩[1,k]|=|Aq∩[1,k]|.
-
引理1 对0≤r≤1,有
$\mathscr{K}$ r⊆$\mathscr{K}$ r+1·$\mathscr{K}$ r+1.证 用ϕ表示空变换,则
$\mathscr{K}$ 0={ϕ},令$\beta = \left({\begin{array}{*{20}{l}} 1\\ 1 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 2\\ 2 \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 1且ϕ=βγ,于是$\mathscr{K}$ 0⊆$\mathscr{K}$ 1·$\mathscr{K}$ 1.对任意α∈
$\mathscr{K}$ 1,不妨设$\alpha = \left({\begin{array}{*{20}{l}} a\\ b \end{array}} \right)$ ∈$\mathscr{OI}$ nk,注意到n≥4,取c∈[n]\{a},分以下情况证明$\mathscr{K}$ 1⊆$\mathscr{K}$ 2·$\mathscr{K}$ 2.情形1 a < c且k=1
当a=k=1时,易知b=1,令
$\beta = \left({\begin{array}{*{20}{l}} 1 & c\\ 1 & 2 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 1 & 3\\ b & 3 \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.当a≠1时,易知b≠1,令
$\beta = \left({\begin{array}{*{20}{l}} a & c\\ 2 & 3 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 1 & 2\\ {b - 1} & b \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.情形2 a < c且k≠1
当a≤k < c时,易知b≤k,令
$\beta = \left({\begin{array}{*{20}{l}} a & c\\ b & c \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} b & {c + 1}\\ b & {c + 1} \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.当a < c≤k时,易知b≤k,令
$\beta = \left({\begin{array}{*{20}{c}} a & c\\ {k - 1} & k \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} {k - 1} & {k + 1}\\ b & {k + 1} \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.当k < a < c时,易知b>k,令
$\beta = \left({\begin{array}{*{20}{c}} a & c\\ {k + 1} & {k + 2} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} k & {k + 1}\\ k & b \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.情形3 a>c且k=1
当c=k=1时,令
$\beta = \left({\begin{array}{*{20}{l}} c & a\\ 1 & 2 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 2 & 3\\ b & {b + 1} \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.当c≠1时,易知1 < c < a,b>1,令
$\beta = \left({\begin{array}{*{20}{l}} c & a\\ 2 & 3 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 1 & 3\\ 1 & b \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.情形4 a>c且k≠1
当c≤k < a时,易知b>k,令
$\beta = \left({\begin{array}{*{20}{c}} c & a\\ k & {k + 1} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} {k + 1} & {k + 2}\\ b & {b + 1} \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.当k < c < a时,易知b>k,令
$\beta = \left({\begin{array}{*{20}{c}} c & a\\ {k + 1} & {k + 2} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 1 & {k + 2}\\ 1 & b \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.当c < a≤k时,易知b≤k,令
$\beta = \left({\begin{array}{*{20}{c}} c & a\\ {k - 1} & k \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} k & {k + 1}\\ b & {k + 1} \end{array}} \right)$ ,则β,γ∈$\mathscr{K}$ 2且α=βγ.综上所述,对0≤r≤1,有
$\mathscr{K}$ r⊆$\mathscr{K}$ r+1·$\mathscr{K}$ r+1.引理2 对2≤r≤m-1,3≤m≤n-1,有
$\mathscr{K}$ r⊆$\mathscr{K}$ r+1·$\mathscr{K}$ r+1.证 任取
其中a1 < a2 < … < ai-1 < ai≤k < ai+1 < … < ar,b1 < b2 < … < bi-1 < bi≤k < bi+1 < … < br,0≤i≤r,令a0=0.
以下分两种情况证明α∈
$\mathscr{K}$ r+1·$\mathscr{K}$ r+1.情形1 α为幂等元.
显然α是dom(α)上的恒等变换.由r≤n-2可知,|[n]\dom(α)|≥2.任取x1,x2∈[n]\dom(α).设ε1,ε2分别为dom(ε1)=dom(α)∪{x1},dom(ε2)=dom(α)∪{x2}上的恒等变换,则ε1,ε2∈E(
$\mathscr{K}$ r+1)且α=ε1ε2.情形2 α为非幂等元.
由α的标准表示可知,当i=0或i=r时,α∈
$\mathscr{OI}$ n.由文献[1]的引理4易知,存在β,γ∈$\mathscr{K}$ r+1,使得α=βγ.下证0 < i < r,可分3种子情形讨论:情形2.1 |{1,2,…,k}\{a1,a2,…,ai}|=0,|{k+1,k+2,…,n}\{ai+1,ai+2,…,ar}|≠0.因α∈
$\mathscr{K}$ r且2≤r≤n-2,可知2≤|{k+1,k+2,…,n}\{ai+1,ai+2,…,ar}|≤n-k.即当ar≠n且br≠n时,令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.当ar≠n且br=n时,由2≤r≤n-2知,存在p∈{i,i+2,…,r-1},使得bp+1-bp>1.令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.当ar=n且br≠n时,由2≤r≤n-2知,存在p∈{i,i+2,…,r-1},使得ap+1-ap>1.令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.当ar=n且br=n时,由2≤r≤n-2知,存在p,q∈{i,i+2,…,r-1},使得ap+1-ap>1,bq+1-bq>1.当p < q时,令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.同理可证,当p≥q时,结论仍然成立.情形2.2 |{1,2,…,k}\{a1,a2,…,ai}|≠0,|{k+1,k+2,…,n}\{ai+1,ai+2,…,ar}|=0.因α∈
$\mathscr{K}$ r且2≤r≤n-2,可知2≤|{1,2,…,k}\{a1,a2,…,ai}|≤k.即当a1≠1且b1≠1时,令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.当a1≠1且b1=1时,由2≤r≤n-2知,存在p∈{1,2,…,i-1},使得bp+1-bp>1.令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.当a1=1且b1≠1时,由2≤r≤n-2知,存在p∈{1,2,…,i-1},使得ap+1-ap>1.令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.当a1=1且b1=1时,由2≤r≤n-2知,存在p,q∈{1,2,…,i-1},使得ap+1-ap>1,bp+1-bp>1,当p < q时,令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.同理可证,当p≥q时,结论仍然成立.情形2.3 |{1,2,…,k}\{a1,a2,…,ai}|≠0,|{k+1,k+2,…,n}\{ai+1,ai+2,…,ar}|≠0.由r≤n-2可得,存在两个不同元素x,y∈[n],使得x∈{1,2,…,k}\{a1,a2,…,ai},y∈{k+1,k+2,…,n}\{bi+1,bi+2,…,br}.假设ap < x < ap+1(p∈{1,2,…,i}),bq < y < bq+1(q∈{i+1,i+2,…,r-1}),令
则β,γ∈
$\mathscr{K}$ r+1且α=βγ.综上所述,α∈
$\mathscr{K}$ r+1·$\mathscr{K}$ r+1,再由α的任意性可得$\mathscr{K}$ r⊆$\mathscr{K}$ r+1·$\mathscr{K}$ r+1.定理1的证明 由引理1引理2可知,任意的α∈
$\mathscr{OI}$ (n,r)k可以表达成$\mathscr{OI}$ (n,r)k的顶端$\mathscr{K}$ -类$\mathscr{K}$ r中秩为r的若干元素的乘积或α∈$\mathscr{K}$ r.换句话说,$\mathscr{K}$ r是$\mathscr{OI}$ (n,r)k的生成集,即$\mathscr{OI}$ (n,r)k=〈$\mathscr{K}$ r〉.引理3 设α,β∈
$\mathscr{OI}$ (n,r)k,若(α,β)∈$\mathscr{K}$ 且(α,αβ)∈$\mathscr{K}$ ,则(αβ,β)∈$\mathscr{L}$ ,(α,αβ)∈$\mathscr{R}$ .证 设α,β∈
$\mathscr{OI}$ (n,r)k,若(α,β)∈$\mathscr{K}$ 且(α,αβ)∈$\mathscr{K}$ ,则|im(α)|=|im(β)|=|im(αβ)|.再由im(αβ)⊆im(β),ker(α)⊆ker(αβ)与[n]的有限性知,im(αβ)=im(β),ker(α)=ker(αβ),即(αβ,β)∈$\mathscr{L}$ ,(α,αβ)∈$\mathscr{R}$ .由引理3可知,
$\mathscr{OI}$ (n,r)k的任意一个生成集都必须覆盖$\mathscr{K}$ r中每个$\mathscr{L}$ -类和$\mathscr{R}$ -类.由组合知识可知,$\mathscr{K}$ r中共有Cnr个$\mathscr{L}$ -类和Cnr个$\mathscr{R}$ -类.因此,得到如下推论1:推论1 设自然数n≥3,则rank(
$\mathscr{OI}$ (n,r)k)≥Cnr.引理4 设自然数n≥3,则rank(
$\mathscr{OI}$ (n,0)k)=1,rank($\mathscr{OI}$ (n,1)k)=Cn1=n.证 由引理1的证明过程易知
$\mathscr{OI}$ (n,0)k=$\mathscr{J}$ 0={Ø},显然有rank($\mathscr{OI}$ (n,0)k)=1.下证rank($\mathscr{OI}$ (n,1)k)=Cn1=n.情形1 当k=1时,首先验证
${\beta _1} = \left({\begin{array}{*{20}{l}} 1\\ 1 \end{array}} \right), {\alpha _1} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$ ,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} i\\ {i + 1} \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} {i + 1}\\ {i + 2} \end{array}} \right)$ ,${\alpha _{i + 1}} = \left({\begin{array}{*{20}{c}} {i + 2}\\ {i + 3} \end{array}} \right)$ ,…,${\alpha _{n - 3}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ n \end{array}} \right)$ ,${\alpha _{n - 1}} = \left({\begin{array}{*{20}{l}} n\\ 2 \end{array}} \right)$ ∈$\mathscr{K}$ 1,并且这n个元素位于$\mathscr{K}$ 1中不同的$\mathscr{L}$ -类和不同的$\mathscr{R}$ -类.令M1={α1,α2,…,αi-1,αi,αi+1,…,αn-1,αn},则|M1|=Cn1=n.其次,对任意的α∈
$\mathscr{K}$ 1必存在i,j∈{1,2,3,…,n-1,n},使得$\alpha = \left({\begin{array}{*{20}{c}} i\\ j \end{array}} \right)$ ,则:(ⅰ)若i=j=1,则α=β1;
(ⅱ)若i≠1且j≠1,当i < j时,有α=αiαi+1…αj-1;
(ⅲ)当i=j时,有α=αiαi+1…αn-2αn-1α1α2…αi-2αi-1;
(ⅳ)当i>j时,有α=αiαi+1…αn-2αn-1α1α2…αj-2αj-1.
由此可见
$\mathscr{K}$ 1⊆〈M1〉.结合定理1知$\mathscr{OI}$ (n,1)k=〈M1〉.情形2 当k=n-1时,验证
${\alpha _1} = \left({\begin{array}{*{20}{l}} 1\\ 2 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$ ,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {i - 1}\\ i \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} i\\ 1 \end{array}} \right)$ ,${\alpha _{i + 1}} = \left({\begin{array}{*{20}{l}} {i + 1}\\ {i + 2} \end{array}} \right)$ ,…${\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 1}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ 1 \end{array}} \right)$ ,${\beta _1} = \left({\begin{array}{*{20}{l}} n\\ n \end{array}} \right)$ ∈$\mathscr{K}$ 1,并且这n个元素位于$\mathscr{K}$ 1中不同的$\mathscr{L}$ -类和不同的$\mathscr{R}$ -类.令M2={α1,α2,…,αi-1,αi,αi+1,…,αn-1,αn},则|M2|=Cn1=n.类似情形1可证
$\mathscr{K}$ 1⊆〈M2〉,$\mathscr{OI}$ (n,1)k=〈M2〉.情形3 当k=i,2≤i < n-1时,验证
${\alpha _1} = \left({\begin{array}{*{20}{l}} 1\\ 2 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$ ,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {i - 1}\\ i \end{array}} \right)$ ,${\alpha _i} = \left({\begin{array}{*{20}{l}} i\\ 1 \end{array}} \right)$ ,${\alpha _{i + 1}} = \left({\begin{array}{*{20}{l}} {i + 1}\\ {i + 2} \end{array}} \right)$ ,…${\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 1}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ n \end{array}} \right)$ ,${\alpha _n} = \left({\begin{array}{*{20}{c}} n\\ {i + 1} \end{array}} \right)$ ∈$\mathscr{K}$ 1,并且这n个元素位于$\mathscr{K}$ 1中不同的$\mathscr{L}$ -类和不同的$\mathscr{R}$ -类.令M3={α1,α2,…,αi-1,αi,αi+1,…,αn-1,αn},则|M3|=Cn1=n.类似情形1可证
$\mathscr{K}$ 1⊆〈M3〉,$\mathscr{OI}$ (n,1)k=〈M3〉.综上所述,注意到|M1|=|M2|=|M3|=Cn1=n.进一步得到rank(
$\mathscr{OI}$ (n,1)k)≤Cn1=n.再结合推论1立即有rank($\mathscr{OI}$ (n,1)k)=Cn1=n.引理5 设n≥3,2≤r≤n-1,则在
$\mathscr{K}$ r中存在基数为Cnr的集合M,使得$\mathscr{K}$ r⊆〈M〉.证 首先,构造
$\mathscr{K}$ r中基数为Cnr的集合M.对任意的D∈Xn(r)={D1,D2,…,Dt}(t=Cnr),不妨设[D]={D=A1,A2,…,Am-1,Am},其中m < t=Cnr.
若m=1,只有
${\alpha _1} = \left({\begin{array}{*{20}{l}} D\\ D \end{array}} \right) = {\varepsilon _D}$ ∈$\mathscr{K}$ r;若2 < m≤t=Cnr,容易验证:
${\alpha _1} = \left({\begin{array}{*{20}{c}} {{A_1}}\\ {{A_2}} \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{c}} {{A_2}}\\ {{A_3}} \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{c}} {{A_3}}\\ {{A_4}} \end{array}} \right)$ ,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {{A_{i - 1}}}\\ {{A_i}} \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} {{A_i}}\\ {{A_{i + 1}}} \end{array}} \right)$ ,${\alpha _{i + 1}} = \left({\begin{array}{*{20}{c}} {{A_{i + 1}}}\\ {{A_{i + 2}}} \end{array}} \right)$ ,…,${\alpha _{m - 2}} = \left({\begin{array}{*{20}{c}} {{A_{m - 2}}}\\ {{A_{m - 1}}} \end{array}} \right), {\alpha _{m - 1}} = \left({\begin{array}{*{20}{c}} {{A_{m - 1}}}\\ {{A_m}} \end{array}} \right)$ ,${\alpha _m} = \left({\begin{array}{*{20}{l}} {{A_m}}\\ {{A_1}} \end{array}} \right)$ ∈$\mathscr{K}$ r.对其余的
$\mathscr{D}$ -类也用类似的方式进行构造,可以得到集合M={α1,α2,…,αm-1,αm,αm+1,…,αt-1,αt}(t=Cnr),并且这t个元素位于$\mathscr{K}$ r中不同的$\mathscr{L}$ -类和不同的$\mathscr{R}$ -类.其次,对任意的α∈
$\mathscr{K}$ r,验证α∈〈M〉,即$\mathscr{K}$ r⊆〈M〉.对任意的α∈
$\mathscr{K}$ r,必存在D∈Xn(r),使得im(α),dom(α)∈[D].不失一般性可设$\alpha = \left({\begin{array}{*{20}{l}} {{A_i}}\\ {{A_j}} \end{array}} \right)$ ,其中Ai,Aj∈[D]={D=A1,A2,…,Am-1,Am}且i,j∈{1,2,…,m-1,m}.若|[D]|=1,则
α=εD=εim(α);
若|[D]|≥2,则:
当i < j时,有α=αiαi+1…αj-1;
当i=j时,有α=αiαi+1…αm-1αmα1α2…αi-2αi-1;
当i>j时,有α=αiαi+1…αm-1αmα1α2…αj-2αj-1.
定理2的证明 由引理4与引理5可知,任意的α∈
$\mathscr{K}$ r可以表达为M中若干元素的乘积或α∈M,即$\mathscr{K}$ r⊆〈M〉.再由定理1知,M是$\mathscr{OI}$ (n,r)k的生成集,即$\mathscr{OI}$ (n,r)k=〈M〉,其中M的定义见引理4与引理5的证明过程.注意到|M|=Cnr,进一步有rank($\mathscr{OI}$ (n,r)k)≤Cnr.因此,结合推论1与引理4,立即有定理3的证明 当l=r时,显然有r(
$\mathscr{OI}$ (n,r)k,$\mathscr{OI}$ (n,l)k)=0.当0≤l < r时,由定理1与定理2的证明过程可知
再由相关秩的定义,可知r(
$\mathscr{OI}$ (n,r)k,$\mathscr{OI}$ (n,1)k)=Cnr.即证得注1 半群
$\mathscr{OI}$ (n,n)k=$\mathscr{OI}$ (n,n-1)k∪{ε[n]}不是由顶端$\mathscr{K}$ -类$\mathscr{K}$ n生成的,且rank($\mathscr{OI}$ (n,n)k)=n+1.