留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

半群$\mathscr{O}$$\mathscr{I}$(n, r)k的秩和相关秩

上一篇

下一篇

吕会, 罗永贵, 赵平. 半群$\mathscr{O}$$\mathscr{I}$(n, r)k的秩和相关秩[J]. 西南师范大学学报(自然科学版), 2019, 44(8): 11-17. doi: 10.13718/j.cnki.xsxb.2019.08.003
引用本文: 吕会, 罗永贵, 赵平. 半群$\mathscr{O}$$\mathscr{I}$(n, r)k的秩和相关秩[J]. 西南师范大学学报(自然科学版), 2019, 44(8): 11-17. doi: 10.13718/j.cnki.xsxb.2019.08.003
Hui LÜ, Yong-gui LUO, Ping ZHAO. On Rank and Relative Rank of the Semigroup $\mathscr{O}$$\mathscr{I}$(n, r)k[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 11-17. doi: 10.13718/j.cnki.xsxb.2019.08.003
Citation: Hui LÜ, Yong-gui LUO, Ping ZHAO. On Rank and Relative Rank of the Semigroup $\mathscr{O}$$\mathscr{I}$(n, r)k[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 11-17. doi: 10.13718/j.cnki.xsxb.2019.08.003

半群$\mathscr{O}$$\mathscr{I}$(n, r)k的秩和相关秩

  • 基金项目: 贵州省科学技术基金-贵州师范大学联合科技基金项目(黔科合LH字(2014)7056号)
详细信息
    作者简介:

    吕会(1995-), 女, 硕士研究生, 主要从事半群代数理论的研究 .

  • 中图分类号: O152.7

On Rank and Relative Rank of the Semigroup $\mathscr{O}$$\mathscr{I}$(n, r)k

计量
  • 文章访问数:  2283
  • HTML全文浏览数:  522
  • PDF下载数:  60
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-20
  • 刊出日期:  2019-08-20

半群$\mathscr{O}$$\mathscr{I}$(n, r)k的秩和相关秩

    作者简介: 吕会(1995-), 女, 硕士研究生, 主要从事半群代数理论的研究
  • 贵州师范大学 数学科学学院, 贵阳 550025
基金项目:  贵州省科学技术基金-贵州师范大学联合科技基金项目(黔科合LH字(2014)7056号)

摘要: 设自然数n≥3,$\mathscr{OI}$nk是有限链[n]上的双边k型-保序严格部分一一变换半群.对任意的1≤kn-1,0≤rn-1,记$\mathscr{OI}$n,rk={α∈$\mathscr{OI}$nk:|im(α)|≤r}为半群$\mathscr{OI}$nk的双边理想.通过对秩为r的元素和格林关系的分析,分别获得了半群$\mathscr{OI}$n,rk的极小生成集和秩.进一步确定了当0≤lr时,半群$\mathscr{OI}$n,rk关于其理想$\mathscr{OI}$n,lk的相关秩.

English Abstract

  • 设[n]={1,2,…,n-1,n}(n≥4),并赋予自然数的大小序.$\mathscr{I}$n$\mathscr{S}$n分别表示[n]上的对称逆半群和对称群,$\mathscr{SI}$n=$\mathscr{I}$n\$\mathscr{S}$n是[n]上的部分一一奇异变换半群.设α$\mathscr{SI}$n,若对任意的xy∈dom(α),由xy可推出,则称α是保序的.设$\mathscr{O}$nTn中所有保序变换之集(不含[n]上的恒等变换),则$\mathscr{O}$nTn的子半群,称$\mathscr{O}$n为[n]上的保序变换半群;记$\mathscr{OI}$n为保序对称逆半群$\mathscr{I}$n\$\mathscr{S}$n中所有保序变换之集,则$\mathscr{OI}$n$\mathscr{I}$n\$\mathscr{S}$n的逆子半群,称$\mathscr{OI}$n为保序严格部分一一变换半群.设k是[n]上的一个固定点,令

    则称$\mathscr{OI}$nk为[n]上双边k型-保序严格部分一一变换半群.记

    易见$\mathscr{OI}$(nr)k$\mathscr{OI}$nk的子半群,且对任意的α$\mathscr{OI}$(nr)kβγ$\mathscr{OI}$(nr)k,均有|im(βαγ)|≤r,即βαγ∈$\mathscr{OI}$(nr)k,因而$\mathscr{OI}$(nr)k$\mathscr{OI}$nk的双边理想.

    通常有限半群S的秩定义为rank(S)=min{|A|:AS,〈A〉=S}.半群S及其子半群V之间的相关秩定义为r(SV)=min{|A|:ASAV=ϕ,〈AV〉=S},易见r(SS)=0.对于有限半群的秩及其相关秩的研究目前已有许多结果[1-13].文献[1]考虑了[n]上的保序有限部分一一奇异变换半群$\mathscr{OI}$n的理想$\mathscr{K}$$\mathscr{O}$(nr)={α$\mathscr{OI}$n:|im(α)|≤r}(0≤rn-1)的生成集和秩,确定了半群$\mathscr{K}$$\mathscr{O}$(nr)的秩为Cnr.文献[2]考虑了半群$\mathscr{OI}$nm偏度秩存在时一定等于n.文献[3-5]考虑了几类不同保序变换半群的秩和相关秩.文献[6-11]研究了几类具有k型-特征的变换半群的秩.

    本文在文献[1-11]的基础上继续考虑双边k型-保序严格部分一一变换半群$\mathscr{OI}$nk的双边理想$\mathscr{OI}$(nr)k的秩和相关秩,证明了如下主要结果:

    定理1  设n≥3,0≤rn-1,则$\mathscr{K}$r$\mathscr{OI}$(nr)k的生成集,即$\mathscr{OI}$(nr)k=〈rankr〉.

    定理2  设n≥3,0≤rn-1,则rank($\mathscr{OI}$(nr)k)=Cnr.

    定理3  设n≥3,0≤lrn-1,则$r\left(\mathscr{O} \mathscr{I}_{(n, r)}^{k}, \mathscr{O} \mathscr{I}_{(n, l)}^{k}\right)=\left\{\begin{array}{ll}{0} &\;\;\;\;{l=r} \\ {C_{n}^{r}} & {0 \leqslant l < r}\end{array}\right.$.

  • A是自然序集[n]的非空子集,设α$\mathscr{OI}$(nr)k,用im(α)表示α的象集,ker(α)表示dom(α)上的如下等价关系:ker(α)={(xy)∈dom(α)×dom(α):=}.对任意的t∈im(α),-1表示t的原象集且|-1|=1.若|im(α)|=r,1≤rn-1,则由双边k型-保序性容易验证α有如下表示法:

    其中a1 < a2 < … < ai-1 < aik < ai+1 < … < arb1 < b2 < … < bi-1 < bik < bi+1 < … < br,易证α是正则元,且$\mathscr{OI}$nk是正则半群.易见对任意的i∈{1,2,…,r},当ai=bi时,α是半群$\mathscr{OI}$nk的幂等元.

    为叙述方便,这里引用Green-等价关系,不难验证,在半群$\mathscr{OI}$(nr)k$\mathscr{L}$$\mathscr{R}$$\mathscr{D}$$\mathscr{K}$[1]有如下刻划:对任意的αβ$\mathscr{OI}$(nr)k,有

    (ⅰ) (αβ)∈$\mathscr{L}$当且仅当im(α)=im(β);

    (ⅱ) (αβ)∈$\mathscr{R}$当且仅当ker(α)=ker(β);

    (ⅲ) (αβ)∈$\mathscr{D}$当且仅当|im(α)|=|im(β)|且|im(α)∩[1,k]|=|im(β)∩[1,k]|;

    (ⅳ) (αβ)∈$\mathscr{K}$当且仅当|im(α)|=|im(β)|.

    易证$\mathscr{K} = \mathop \cup \limits_{i = 1}^S {\mathscr{D}_i}$,其中$s = \left\{ {\begin{array}{*{20}{l}} {r + 1} & {k \ge r, n - k \ge r}\\ {n - k + 1} & {k \ge r, n - k < r}\\ {k + 1} & {k < r, n - k \ge r}\\ {n - r + 1} & {k < r, n - k < r} \end{array}} \right.$

    易见$\mathscr{L}$$\mathscr{K}$$\mathscr{R}$$\mathscr{K}$.记$\mathscr{K}$r={α$\mathscr{OI}$(nr)k:|im(α)|=r},0≤rn-1,1≤kn-1.显然$\mathscr{K}$0$\mathscr{K}$1$\mathscr{K}$2,…,$\mathscr{K}$r-1$\mathscr{K}$r恰好是$\mathscr{OI}$(nr)kr+1个$\mathscr{K}$-类,不难验证$\mathscr{OI}_n^k = \bigcup\limits_{i = 1}^r {{\mathscr{K}_i}} $是具有包含关系$\mathscr{OI}$(n,0)k$\mathscr{OI}$(n,1)k⊂…⊂$\mathscr{OI}$(nn-1)k=$\mathscr{OI}$nk的双边理想链.

    定义1  用Xn(r)表示自然序集[n]={1,2,3,…,n-1,n}(n≥4)的所有r元子集,则Xn(r)中共有Cnr(其中Cnr表示从n个元素中取出r个元素的组合数)个元素.令t=Cnr,记Xn(r)={A1A2,…,At},其中Ai={a1 < a2 < … < ai < … < ar},Ai⊆[n]且|Ai|=r(i=1,2,…,t-1,t).将Xn(r)按照不同$\mathscr{D}$关系分类,记为[D]={ADXn(r):|A∩[1,k]|=|D∩[1,k]|}.进一步可证:对于任意的αβ∈ [D],其中$\alpha = \left({\begin{array}{*{20}{l}} {{A_i}}\\ {{A_j}} \end{array}} \right)$$\beta = \left({\begin{array}{*{20}{l}} {{A_p}}\\ {{A_q}} \end{array}} \right)$,可知|Aj|=|Aq|且|Aj∩[1,k]|=|Aq∩[1,k]|.

    本文未定义的术语及符号参见文献[12-13].

  • 引理1  对0≤r≤1,有$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

      用ϕ表示空变换,则$\mathscr{K}$0={ϕ},令$\beta = \left({\begin{array}{*{20}{l}} 1\\ 1 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 2\\ 2 \end{array}} \right)$,则βγ$\mathscr{K}$1ϕ=βγ,于是$\mathscr{K}$0$\mathscr{K}$1· $\mathscr{K}$1.

    对任意α$\mathscr{K}$1,不妨设$\alpha = \left({\begin{array}{*{20}{l}} a\\ b \end{array}} \right)$$\mathscr{OI}$nk,注意到n≥4,取c∈[n]\{a},分以下情况证明$\mathscr{K}$1$\mathscr{K}$2· $\mathscr{K}$2.

    情形1  a < ck=1

    a=k=1时,易知b=1,令$\beta = \left({\begin{array}{*{20}{l}} 1 & c\\ 1 & 2 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 1 & 3\\ b & 3 \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    a≠1时,易知b≠1,令$\beta = \left({\begin{array}{*{20}{l}} a & c\\ 2 & 3 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 1 & 2\\ {b - 1} & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    情形2  a < ck≠1

    ak < c时,易知bk,令$\beta = \left({\begin{array}{*{20}{l}} a & c\\ b & c \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} b & {c + 1}\\ b & {c + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    a < ck时,易知bk,令$\beta = \left({\begin{array}{*{20}{c}} a & c\\ {k - 1} & k \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} {k - 1} & {k + 1}\\ b & {k + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    k < a < c时,易知b>k,令$\beta = \left({\begin{array}{*{20}{c}} a & c\\ {k + 1} & {k + 2} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} k & {k + 1}\\ k & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    情形3  a>c且k=1

    c=k=1时,令$\beta = \left({\begin{array}{*{20}{l}} c & a\\ 1 & 2 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 2 & 3\\ b & {b + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    c≠1时,易知1 < c < ab>1,令$\beta = \left({\begin{array}{*{20}{l}} c & a\\ 2 & 3 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 1 & 3\\ 1 & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    情形4  a>ck≠1

    ck < a时,易知b>k,令$\beta = \left({\begin{array}{*{20}{c}} c & a\\ k & {k + 1} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} {k + 1} & {k + 2}\\ b & {b + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    k < c < a时,易知b>k,令$\beta = \left({\begin{array}{*{20}{c}} c & a\\ {k + 1} & {k + 2} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 1 & {k + 2}\\ 1 & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    c < ak时,易知bk,令$\beta = \left({\begin{array}{*{20}{c}} c & a\\ {k - 1} & k \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} k & {k + 1}\\ b & {k + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    综上所述,对0≤r≤1,有$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

    引理2  对2≤rm-1,3≤mn-1,有$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

      任取

    其中a1 < a2 < … < ai-1 < aik < ai+1 < … < arb1 < b2 < … < bi-1 < bik < bi+1 < … < br,0≤ir,令a0=0.

    以下分两种情况证明α$\mathscr{K}$r+1· $\mathscr{K}$r+1.

    情形1  α为幂等元.

    显然α是dom(α)上的恒等变换.由rn-2可知,|[n]\dom(α)|≥2.任取x1x2∈[n]\dom(α).设ε1ε2分别为dom(ε1)=dom(α)∪{x1},dom(ε2)=dom(α)∪{x2}上的恒等变换,则ε1ε2E($\mathscr{K}$r+1)且α=ε1ε2.

    情形2  α为非幂等元.

    α的标准表示可知,当i=0或i=r时,α$\mathscr{OI}$n.由文献[1]的引理4易知,存在βγ$\mathscr{K}$r+1,使得α=βγ.下证0 < i < r,可分3种子情形讨论:

    情形2.1  |{1,2,…,k}\{a1a2,…,ai}|=0,|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|≠0.因α$\mathscr{K}$r且2≤rn-2,可知2≤|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|≤n-k.即

    arn且brn时,令

    βγ$\mathscr{K}$r+1α=βγ.

    arn且br=n时,由2≤rn-2知,存在p∈{ii+2,…,r-1},使得bp+1-bp>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    ar=n且brn时,由2≤rn-2知,存在p∈{ii+2,…,r-1},使得ap+1-ap>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    ar=n且br=n时,由2≤rn-2知,存在pq∈{ii+2,…,r-1},使得ap+1-ap>1,bq+1-bq>1.当p < q时,令

    βγ$\mathscr{K}$r+1α=βγ.同理可证,当pq时,结论仍然成立.

    情形2.2  |{1,2,…,k}\{a1a2,…,ai}|≠0,|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|=0.因α$\mathscr{K}$r且2≤rn-2,可知2≤|{1,2,…,k}\{a1a2,…,ai}|≤k.即

    a1≠1且b1≠1时,令

    βγ$\mathscr{K}$r+1α=βγ.

    a1≠1且b1=1时,由2≤rn-2知,存在p∈{1,2,…,i-1},使得bp+1-bp>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    a1=1且b1≠1时,由2≤rn-2知,存在p∈{1,2,…,i-1},使得ap+1-ap>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    a1=1且b1=1时,由2≤rn-2知,存在pq∈{1,2,…,i-1},使得ap+1-ap>1,bp+1-bp>1,当p < q时,令

    βγ$\mathscr{K}$r+1α=βγ.同理可证,当pq时,结论仍然成立.

    情形2.3 |{1,2,…,k}\{a1a2,…,ai}|≠0,|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|≠0.由rn-2可得,存在两个不同元素xy∈[n],使得x∈{1,2,…,k}\{a1a2,…,ai},y∈{k+1,k+2,…,n}\{bi+1bi+2,…,br}.假设ap < x < ap+1(p∈{1,2,…,i}),bq < y < bq+1(q∈{i+1,i+2,…,r-1}),令

    βγ$\mathscr{K}$r+1α=βγ.

    综上所述,α$\mathscr{K}$r+1· $\mathscr{K}$r+1,再由α的任意性可得$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

    定理1的证明  由引理1引理2可知,任意的α$\mathscr{OI}$(nr)k可以表达成$\mathscr{OI}$(nr)k的顶端$\mathscr{K}$-类$\mathscr{K}$r中秩为r的若干元素的乘积或α$\mathscr{K}$r.换句话说,$\mathscr{K}$r$\mathscr{OI}$(nr)k的生成集,即$\mathscr{OI}$(nr)k=〈 $\mathscr{K}$r〉.

    引理3  设αβ$\mathscr{OI}$(nr)k,若(αβ)∈ $\mathscr{K}$且(ααβ)∈ $\mathscr{K}$,则(αββ)∈ $\mathscr{L}$,(ααβ)∈ $\mathscr{R}$.

      设αβ$\mathscr{OI}$(nr)k,若(αβ)∈ $\mathscr{K}$且(ααβ)∈ $\mathscr{K}$,则|im(α)|=|im(β)|=|im(αβ)|.再由im(αβ)⊆im(β),ker(α)⊆ker(αβ)与[n]的有限性知,im(αβ)=im(β),ker(α)=ker(αβ),即(αββ)∈ $\mathscr{L}$,(ααβ)∈ $\mathscr{R}$.

    由引理3可知,$\mathscr{OI}$(nr)k的任意一个生成集都必须覆盖$\mathscr{K}$r中每个$\mathscr{L}$-类和$\mathscr{R}$-类.由组合知识可知,$\mathscr{K}$r中共有Cnr$\mathscr{L}$-类和Cnr$\mathscr{R}$-类.因此,得到如下推论1:

    推论1  设自然数n≥3,则rank($\mathscr{OI}$(nr)k)≥Cnr.

    引理4  设自然数n≥3,则rank($\mathscr{OI}$(n,0)k)=1,rank($\mathscr{OI}$(n,1)k)=Cn1=n.

      由引理1的证明过程易知$\mathscr{OI}$(n,0)k= $\mathscr{J}$0={Ø},显然有rank($\mathscr{OI}$(n,0)k)=1.下证rank($\mathscr{OI}$(n,1)k)=Cn1=n.

    情形1  当k=1时,首先验证${\beta _1} = \left({\begin{array}{*{20}{l}} 1\\ 1 \end{array}} \right), {\alpha _1} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} i\\ {i + 1} \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} {i + 1}\\ {i + 2} \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{c}} {i + 2}\\ {i + 3} \end{array}} \right)$,…,${\alpha _{n - 3}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ n \end{array}} \right)$${\alpha _{n - 1}} = \left({\begin{array}{*{20}{l}} n\\ 2 \end{array}} \right)$$\mathscr{K}$1,并且这n个元素位于$\mathscr{K}$1中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.令M1={α1α2,…,αi-1αiαi+1,…,αn-1αn},则|M1|=Cn1=n.

    其次,对任意的α$\mathscr{K}$1必存在ij∈{1,2,3,…,n-1,n},使得$\alpha = \left({\begin{array}{*{20}{c}} i\\ j \end{array}} \right)$,则:

    (ⅰ)若i=j=1,则α=β1

    (ⅱ)若i≠1且j≠1,当i < j时,有α=αiαi+1αj-1

    (ⅲ)当i=j时,有α=αiαi+1αn-2αn-1α1α2αi-2αi-1

    (ⅳ)当i>j时,有α=αiαi+1αn-2αn-1α1α2αj-2αj-1.

    由此可见$\mathscr{K}$1⊆〈M1〉.结合定理1知$\mathscr{OI}$(n,1)k=〈M1〉.

    情形2  当k=n-1时,验证${\alpha _1} = \left({\begin{array}{*{20}{l}} 1\\ 2 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {i - 1}\\ i \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} i\\ 1 \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{l}} {i + 1}\\ {i + 2} \end{array}} \right)$,…${\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 1}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ 1 \end{array}} \right)$${\beta _1} = \left({\begin{array}{*{20}{l}} n\\ n \end{array}} \right)$$\mathscr{K}$1,并且这n个元素位于$\mathscr{K}$1中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.令M2={α1α2,…,αi-1αiαi+1,…,αn-1αn},则|M2|=Cn1=n.

    类似情形1可证$\mathscr{K}$1⊆〈M2〉,$\mathscr{OI}$(n,1)k=〈M2〉.

    情形3  当k=i,2≤i < n-1时,验证${\alpha _1} = \left({\begin{array}{*{20}{l}} 1\\ 2 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {i - 1}\\ i \end{array}} \right)$${\alpha _i} = \left({\begin{array}{*{20}{l}} i\\ 1 \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{l}} {i + 1}\\ {i + 2} \end{array}} \right)$,…${\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 1}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ n \end{array}} \right)$${\alpha _n} = \left({\begin{array}{*{20}{c}} n\\ {i + 1} \end{array}} \right)$$\mathscr{K}$1,并且这n个元素位于$\mathscr{K}$1中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.令M3={α1α2,…,αi-1αiαi+1,…,αn-1αn},则|M3|=Cn1=n.

    类似情形1可证$\mathscr{K}$1⊆〈M3〉,$\mathscr{OI}$(n,1)k=〈M3〉.

    综上所述,注意到|M1|=|M2|=|M3|=Cn1=n.进一步得到rank($\mathscr{OI}$(n,1)k)≤Cn1=n.再结合推论1立即有rank($\mathscr{OI}$(n,1)k)=Cn1=n.

    引理5  设n≥3,2≤rn-1,则在$\mathscr{K}$r中存在基数为Cnr的集合M,使得$\mathscr{K}$r⊆〈M〉.

      首先,构造$\mathscr{K}$r中基数为Cnr的集合M.

    对任意的DXn(r)={D1D2,…,Dt}(t=Cnr),不妨设[D]={D=A1A2,…,Am-1Am},其中m < t=Cnr.

    m=1,只有${\alpha _1} = \left({\begin{array}{*{20}{l}} D\\ D \end{array}} \right) = {\varepsilon _D}$$\mathscr{K}$r

    若2 < mt=Cnr,容易验证:${\alpha _1} = \left({\begin{array}{*{20}{c}} {{A_1}}\\ {{A_2}} \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{c}} {{A_2}}\\ {{A_3}} \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{c}} {{A_3}}\\ {{A_4}} \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {{A_{i - 1}}}\\ {{A_i}} \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} {{A_i}}\\ {{A_{i + 1}}} \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{c}} {{A_{i + 1}}}\\ {{A_{i + 2}}} \end{array}} \right)$,…,${\alpha _{m - 2}} = \left({\begin{array}{*{20}{c}} {{A_{m - 2}}}\\ {{A_{m - 1}}} \end{array}} \right), {\alpha _{m - 1}} = \left({\begin{array}{*{20}{c}} {{A_{m - 1}}}\\ {{A_m}} \end{array}} \right)$${\alpha _m} = \left({\begin{array}{*{20}{l}} {{A_m}}\\ {{A_1}} \end{array}} \right)$$\mathscr{K}$r.

    对其余的$\mathscr{D}$-类也用类似的方式进行构造,可以得到集合M={α1α2,…,αm-1αmαm+1,…,αt-1αt}(t=Cnr),并且这t个元素位于$\mathscr{K}$r中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.

    其次,对任意的α$\mathscr{K}$r,验证α∈〈M〉,即$\mathscr{K}$r⊆〈M〉.

    对任意的α$\mathscr{K}$r,必存在DXn(r),使得im(α),dom(α)∈[D].不失一般性可设$\alpha = \left({\begin{array}{*{20}{l}} {{A_i}}\\ {{A_j}} \end{array}} \right)$,其中AiAj∈[D]={D=A1A2,…,Am-1Am}且ij∈{1,2,…,m-1,m}.

    若|[D]|=1,则

    α=εD=εim(α)

    若|[D]|≥2,则:

    i < j时,有α=αiαi+1αj-1

    i=j时,有α=αiαi+1αm-1αmα1α2αi-2αi-1

    i>j时,有α=αiαi+1αm-1αmα1α2αj-2αj-1.

    定理2的证明  由引理4与引理5可知,任意的α$\mathscr{K}$r可以表达为M中若干元素的乘积或αM,即$\mathscr{K}$r⊆〈M〉.再由定理1知,M$\mathscr{OI}$(nr)k的生成集,即$\mathscr{OI}$(nr)k=〈M〉,其中M的定义见引理4与引理5的证明过程.注意到|M|=Cnr,进一步有rank($\mathscr{OI}$(nr)k)≤Cnr.因此,结合推论1与引理4,立即有

    定理3的证明  当l=r时,显然有r($\mathscr{OI}$(nr)k$\mathscr{OI}$(nl)k)=0.

    当0≤l < r时,由定理1与定理2的证明过程可知

    再由相关秩的定义,可知r($\mathscr{OI}$(nr)k$\mathscr{OI}$(n,1)k)=Cnr.即证得

    注1  半群$\mathscr{OI}$(nn)k=$\mathscr{OI}$(nn-1)k∪{ε[n]}不是由顶端$\mathscr{K}$-类$\mathscr{K}$n生成的,且rank($\mathscr{OI}$(nn)k)=n+1.

参考文献 (13)

目录

/

返回文章
返回