-
Gronwall-Bellman型积分不等式[1-2]及其推广形式在研究微分方程、积分方程和微积分方程解的存在性、有界性和唯一性等定性性质时具有重要作用,所以人们不断地研究它的各种推广形式,使其应用范围不断扩大,例如文献[3-7]及其引文.由于分析微分方程组解的需要,人们也研究积分不等式组.文献[8]研究了积分不等式组
文献[9]研究了弱奇异积分不等式
文献[10]研究了更一般形式的弱奇异积分不等式
受文献[8-11]的启发,本文研究了积分号外具有非常数因子,且不等式左边是未知函数幂函数的弱奇异积分不等式组
不等式组(5)把文献[8]中的不等式(1)和(2)推广成积分号外含有非常数因子的弱奇异积分不等式,把文献[9-10]中的不等式(3)和(4)推广成不等式组.利用Hölder积分不等式、Gamma函数和Beta函数把弱奇异积分问题转化成没有奇异的积分问题,利用Bernoulli不等式把非线性问题转化成线性问题,利用积分不等式的结果给出不等式组(5)中两个未知函数的估计.该结果可用于研究积分、微分方程组解的性质.
Estimation of Unknown Functions in a Class of Nonlinear Weakly Singular Integral Inequalities
-
摘要: 研究了一类二维非线性弱奇异积分不等式组.该不等式组积分号外有不同的非常数函数因子,不能用向量形式的Gronwall-Bellman型积分不等式进行估计.利用Hölder积分不等式、Gamma函数和Beta函数把弱奇异非线性积分问题转化成没有奇异的非线性积分问题,利用Bernoulli不等式把非线性问题转化成线性问题,利用变量替换技巧和放大技巧研究只含有一个未知函数的积分不等式,接着给出不等式组中两个未知函数的估计.该结果可用于研究积分、微分动力系统解的估计.
-
关键词:
- Gronwall-Bellman型积分不等式 /
- 弱奇异积分不等式 /
- 二维积分不等式组 /
- 显式估计
Abstract: A class of two-dimensional weakly singular nonlinear integral inequalities have been studied, which include non-constant function factors outside the integral terms, and can not be estimated by Gronwall-Bellman type integral inequalities in vector form. With Hölder integral inequality, Gamma function and Beta function, the weak singular nonlinear integral problem is transformed into no singular nonlinear integral problem; and with Bernoulli inequality, the nonlinear problem is transformed into a linear problem; and with the variable substitution technique and the magnification technique, the integral inequality with only one unknown function is studied, and thenthe estimations of the two unknown functions in the inequality group are given. This result can be used to study the properties of the solutions of the integral and differential dynamical systems. -
[1] GRONWALL T H.Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations[J]. Ann Math, 1919, 20(4):292-296. [2] BELLMAN R. The Stability of Solutions of Linear Differential Equations[J]. Duke Math J, 1943, 10(4):643-647. doi: 10.1215/S0012-7094-43-01059-2 [3] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b5fa02aafb2be76ee1b5f98cb986a8b AGARWAL R P, DENGS F, ZHANGW N.Generalization of a Retarded Gronwall-Like Inequality and its Applications[J]. Appl Math Comput, 2005, 165(3):599-612. [4] 卢钰松, 王五生.一类含有p次幂的Volterra-Fredholm型非线性迭代积分不等式[J].西南大学学报(自然科学版), 2015, 37(8):76-80. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201508013 [5] 侯宗毅, 王五生.一类变下限非线性Volterra-Fredholm型积分不等式及其应用[J].西南师范大学学报(自然科学版), 2016, 41(2):21-25. doi: http://www.xnsfdxxb.cn/index.php?m=content&c=index&a=show&catid=96&id=2272 [6] 梁英.一类时滞弱奇异Wendroff型积分不等式[J].四川师范大学学报(自然科学版), 2014, 37(4):493-496. doi: 10.3969/j.issn.1001-8395.2014.04.009 [7] 欧阳云, 王五生.一类非线性弱奇异三重积分不等式中未知函数的估计及其应用[J].西南大学学报(自然科学版), 2017, 39(3):69-74. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201703011 [8] 周俊.关于一个积分不等式组的讨论[J].四川大学学报(自然科学版), 2009, 46(1):21-25. doi: 10.3969/j.issn.0490-6756.2009.01.005 [9] MA Q H, PEČARIĆ J. Some New Explicit Bounds for Weakly Singular Integral Inequalities with Applications to Fractional Differential and Integral Equations[J]. Journal of Mathematical Analysis and Applications, 2008, 341(2):894-905. doi: 10.1016/j.jmaa.2007.10.036 [10] XU R, MENG F W. Some New Weakly Singular Integral Inequalities and Their Applications to Fractional Differential Equations[J]. Journal of Inequalities andApplications, 2016, 2016:78. doi: 10.1186/s13660-016-1015-2 [11] 马庆华, 杨恩浩.弱奇性Volterra积分不等式解的估计[J].应用数学学报, 2002, 25(3):505-515. doi: 10.3321/j.issn:0254-3079.2002.03.015 [12] LUO R C, WANG W S, HOU Z Y.Explicit Bounds of Unknown Function of Some New Weakly Singular Retarded Integralinequalities with Applications[J]. Journal of Mathematical Inequalities, 2018, 12(1):235-250. [13] MEDVEĎ M.A New Approach to an Analysis of Henry Type Integral Inequalities and Their Bihari Type Versions[J]. Journal of Mathematical Analysis and Applications, 1997, 214(2):349-366. doi: 10.1006/jmaa.1997.5532 [14] 张伟年, 杜正东, 徐冰.常微分方程[M].北京:高等教育出版社, 2014:136-137.
计量
- 文章访问数: 676
- HTML全文浏览数: 471
- PDF下载数: 52
- 施引文献: 0