留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

高等数学中牛顿-莱布尼茨公式的教学探讨

上一篇

下一篇

张双虎,欧增奇. 高等数学中牛顿-莱布尼茨公式的教学探讨[J]. 西南师范大学学报(自然科学版), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.035
引用本文: 张双虎,欧增奇. 高等数学中牛顿-莱布尼茨公式的教学探讨[J]. 西南师范大学学报(自然科学版), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.035
ZHANG Shuang-hu,OU Zeng-qi. On Newton-Leibniz Formula in Teaching the Higher Mathematics[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.035
Citation: ZHANG Shuang-hu,OU Zeng-qi. On Newton-Leibniz Formula in Teaching the Higher Mathematics[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.035

高等数学中牛顿-莱布尼茨公式的教学探讨

On Newton-Leibniz Formula in Teaching the Higher Mathematics

  • 摘要: New ton‐Leibniz formula ,w hich provides an efficient method for the computation of definite inte‐grals ,is the very kernel theorem .However ,the computation of definite integrals is subjected to some re‐striction ,since the theorem can only be used under a better assumption .In this paper ,New ton‐Leibniz formula has been generalized and its form for improper integral been presented .Our results are not only useful for integral theory and computation ,but also for the class teaching of higher mathematics .
  • 加载中
  • 加载中
计量
  • 文章访问数:  435
  • HTML全文浏览数:  223
  • PDF下载数:  0
  • 施引文献:  0
出版历程

高等数学中牛顿-莱布尼茨公式的教学探讨

  • 西南大学数学与统计学院,重庆,400715

摘要: New ton‐Leibniz formula ,w hich provides an efficient method for the computation of definite inte‐grals ,is the very kernel theorem .However ,the computation of definite integrals is subjected to some re‐striction ,since the theorem can only be used under a better assumption .In this paper ,New ton‐Leibniz formula has been generalized and its form for improper integral been presented .Our results are not only useful for integral theory and computation ,but also for the class teaching of higher mathematics .

English Abstract

参考文献 (0)

目录

/

返回文章
返回