拉普拉斯变换方法解分数阶微分方程
On Laplace Transform Method for Solving Fractional Differential Equations
-
摘要: 给出了两种常见分数阶导数即Riemann‐Liouville分数阶导数和Caputo分数阶导数的拉普拉斯变换公式,并给出具体实例说明如何利用拉普拉斯变换求解分数阶微分方程和分布阶微分方程。
-
关键词:
- Riemann-Liouville分数阶导数 /
- Caputo分数阶导数 /
- 拉普拉斯变换 /
- 分数阶微分方程 /
- 分布阶微分方程
Abstract: The Laplace transform of two fractional derivatives namely Riemann‐Liouville fractional deriva‐tive and Caputo fractional derivative have been given in this paper ,and specific examples have been given to explain how to use Laplace transform for solving fractional differential equations and distribution order differential equations . -
-
计量
- 文章访问数: 2299
- HTML全文浏览数: 1138
- PDF下载数: 13
- 施引文献: 0