-
桑树(Morus alba L.)适应性强,几千年来作为家蚕唯一的饲料源,在全国各省区广泛种植.由于桑树具有耐寒耐旱耐山火,可保持水土[1-2],萌生能力极强,对氯气、二氧化硫和硫化氢具较强耐受性[3]等特性,因而是生态改良的主要树种.桑果不仅基础营养物质含量丰富,而且富含氨基酸、维生素以及白藜芦醇、花青素等抗氧化活性物质[4],具有增强人体免疫力、延缓衰老和美容养颜等功效[5].然而,近年来桑疫病和菌核病等各类病害日趋严重,而现有针对桑树病害的化学农药防治方法所导致的负面影响亦日益凸显,严重制约生态桑产业的健康发展,故寻找高效且绿色环保的桑树病害防治方法已迫在眉睫.
植物内生菌(Endophytes)是生活于健康植物各组织器官的细胞间隙或者细胞内部,并与宿主植物和谐共处的一类微生物[6-7].作为植物微生态系统的重要组成部分,内生菌构筑了宿主植物的健康屏障[8-10],能够通过合成抗菌活性物质[11]、竞争性排阻[12]、促进植物生长[13]及诱导抗性[14]等方式增强宿主植物的抗病能力.近几年,对桑树内生菌多样性及利用其进行植物病害生物防治方面已有研究,但主要集中于培养法.路国兵等人[15]从不同桑树品种的不同组织中共分离得到内生细菌229个分离株,并从中筛选得到67个分离株对桑树炭疽病菌或桑粘格孢菌具有拮抗作用;谭广秀[16]从桑枝中分离获得内生细菌26个分离株,并从中筛选出2株具有抑菌活性的内生菌.此外,本研究小组的研究结果表明桑树内生拮抗菌成团泛菌(Pantoea agglomerans)及特基拉芽孢杆菌(Bacillus tequilensis)分别对桑细菌性疫病病原菌、桑椹缩小性菌核病病原菌有稳定而显著的抑制作用[17-18].然而培养法存在一定局限,无法全面客观反映植物内生菌的种群结构.因此,本文采用构建桑树内生细菌16S rDNA文库的非培养法和培养法,对桑树内生细菌的多样性进行系统研究,并检测培养法获得的内生细菌对桑疫病病原菌(丁香假单胞菌桑致病变种)等10株病原指示菌的拮抗作用,以期阐明内生菌与桑树共生过程中的功能和潜在作用,为利用内生菌进行桑树病害的生物防治提供新的资源.
Research on Biodiversity of Endophytic Bacteria and the Antagonistic Endophytes in Mulberry
-
摘要: 为探究桑树内生细菌多样性,获得拮抗性内生菌,开发利用桑树内生菌资源,通过非培养法构建16S rDNA文库,并结合组织分离培养法对桐乡青(桑树品种)内生细菌的种群特征进行了研究.非培养法研究结果显示所构建文库的111个阳性克隆属于22个分类单元,其分属于3门10属,其中,鞘氨醇单胞菌属(Sphingomonas)、Massilia和甲基杆菌属(Methylobacterium)为优势菌属;使用不同培养基通过培养法从桐乡青茎中获得25个内生细菌分离株,基于16S rDNA序列系统发育分析其属于15个分类单元,其分属于3门12属,其中肠杆菌属(Enterobacter)、芽孢杆菌属(Bacillus)和泛菌属(Pantoea)为优势菌属.培养法得到的内生细菌种群与非培养法差异较大,仅假单胞菌属(Pseudomonas)和鞘氨醇单胞菌属(Sphingomonas)为共同菌属,且培养法得到的内生细菌多样性和均匀度指数(H′ 2.54,D 0.91,J 0.79)均高于非培养法(H′ 2.21,D 0.84,J 0.48).采用抑菌圈法,以10株植物病原菌作为指示菌,结果显示多达18株桑树内生细菌对一种或多种病原菌有抑制作用.综上结果表明,桑树内生细菌具有丰富的多样性,并且包含大量具有抗菌活性的菌株,以桐乡青材料为例,抗菌活性菌株约占其内生细菌的72%.Abstract: In order to lay a good foundation for the exploration and utilization of mulberry endophyte resources, the biodiversity of endophytes in mulberry was investigated and antibiotic endophytes were obtained in this study. A 16S rDNA clone library was constructed by the culture-independent approach, and the community characteristics of mulberry endophytes in Tongxiangqing (a variety of mulberry) were investigated in combination with the tissue isolation culture method. Using common plant pathogens as the target, antagonistic endophytes were screened out. The results obtained with the culture-independent method showed that the 111 positive clones in the library constructed belonged to 22 operational taxonomic units, involving 10 genera of 3 phyla. Among them, Sphingomonas, Massilia and Methylobacterium were the dominant populations. Twenty-five isolates were obtained from mulberry stems with the culture-dependent method on different media. They were classified into 15 operational taxonomic units, involving 12 genera of 3 phyla, with Enterobacter, Bacillus and Pantoea being the dominant genera. The populations of endophytic bacteria obtained through the culture-dependent method were quite different from those gained through the culture-independent method. Only Pseudomonas and Sphingomonas were common genera between them. Furthermore, both the biodiversity index and the evenness index of endophytic bacteria obtained through the culture-dependent method (H′ 2.54, D 0.91, J 0.79) were higher than those by the culture-independent method (H′ 2.21, D 0.84, J 0.48). Based on the results of an antagonism assay of 10 pathogens, as much as 18 endophytic bacteria in mulberry showed inhibitory activity on one or more pathogens. It is concluded from what is stated above that endophytic bacteria in mulberry have great biodiversity and contain a large number of strains with antimicrobial activity (72% of the total).
-
表 1 桑树内生细菌种群分布
门 种 分离频率 非培养法 培养法 Actinobacteria Curtobacterium flaccumfaciens 3.85 - Frigoribacterium faeni 1.92 - Firmicutes Bacillus cereus - 4.00 Bacillus thuringiensis - 4.00 Bacillus amyloliquefaciens - 4.00 Staphylococcus epidermidis - 4.00 Proteobacteria Desulfonatronovibrio magnus 0.96 - Duganella sacchari - 4.00 Enterobacter asburiae - 4.00 Enterobacter cancerogenus - 20.00 Enterobacter ludwigii - 4.00 Erwinia aphidicola - 4.00 Hymenobacter flocculans 1.92 - Leclercia adecarboxylata - 8.00 Massilia albidiflava 3.85 - Massilia kyonggiensis 0.96 - Massilia namucuonensis 16.35 - Massilia plicata 0.96 - Massilia timonae 0.96 - Methylobacterium aquaticum 0.96 - Methylobacterium fujisawaense 14.42 - Methylobacterium goesingense 6.73 - Methylobacterium komagatae 0.96 - Methylobacterium persicinum 3.85 - Methylobacterium phyllosphaerae 1.92 - Methylobacterium tardum 0.96 - Mucilaginibacter soli 0.96 - Novosphingobium barchaimii - 4.00 Pantoea agglomerans - 12.00 Peredibacter starrii 0.96 - Pseudomonas oryzihabitans 1.92 - Pseudomonas psychrotolerans - 8.00 Sphingobacterium caeni - 4.00 Sphingomonas melonis 18.27 - Sphingomonas pruni 13.46 - Sphingomonas roseiflava 2.88 - Sphingomonas sanguinis - 8.00 Xanthomonas campestris - 4.00 表 2 桑树内生细菌多样性分析
指数 非培养法 培养法 香农多样性指数(H′) 2.21 2.54 辛普森多样性指数(D) 0.84 0.91 丰度 22 15 皮耶诺均匀度指数(J) 0.48 0.79 表 3 桑树内生菌株的抑菌试验结果
指示菌 内生菌分离株 TGJ1 TGJ2 TGY1 TGY2 TPJ1 TPJ2 TPJ3 TPY1 TPY2 TPY3 TPY5 TPY6 TPY8 TPY11 TPY12 TPY14 TPY16 TPY17 Pseudomonas syringae pv. mori - - + - - + - + + + - - - + + - + - Sclerotinia sclerotiorum - - - + - - - - - - + - - - - - - - Pythium ultimum - + - - - - - - - - - - - - - - - - Colletrichum lagenarium - - - + - - + - - - + - - - - - - - Fusarium solani + - - - - - - + - - - - - - - - - - Phytophthora nicotianae - - - - + + - - - - - + - - - - - + Rhizoctonia solani + - - - - - - + + - - - + - - + - + Alternaria sp. - - - - - - - + - - - - - - - - - - Verticillium dahliae - - + - - - - - - - - - - - - - - - Thanatephorus cucumeris + - - - - + + + + - - + + - - - - + 注:+:抑制;-:无抑制. -
[1] SUSHEELAMA B N, 张林.桑树种质的抗旱性评估[J].国外农学(蚕业), 1992(1): 34-36. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA199201008.htm [2] 张光灿, 杨吉华, 赵新明, 等.桑树根系分布及水土保持特性的研究[J].蚕业科学, 1996, 23(1): 59-60. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE199701014.htm [3] 买买提依明, 徐立, 夏庆友, 等.新疆维吾尔自治区桑树自然分布区域的地理生态环境及桑树形态特征[J].蚕业科学, 2008, 34(2): 294-297. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE200802024.htm [4] 黄君霆, 朱万民, 夏建国, 等.中国蚕丝大全[M].成都:四川科学技术出版社, 1996: 854-855. [5] 王储炎, 范涛, 桂仲争, 等.桑椹食品的开发探讨[J].食品工业, 2011(3): 95-98. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201103034.htm [6] doi: https://www.researchgate.net/publication/289677993_Isolation_of_endophytic_diazotrophic_bacteria_from_wetland_rice BARRAQUIO W L, REVILLA L, LADHA J K. Isolation of Endophytic Bacteria Diazotrophic Bacteria from Wetland Rice [J]. Plant and Soil, 1997, 194(1): 15-24. [7] doi: https://www.researchgate.net/publication/47635045_Endophytic_fungal_diversity_in_Theobroma_cacao_cacao_and_T_grandiflorum_cupuacu_trees_and_their_potential_for_growth_promotion_and_biocontrol_of_black-pod_disease HANADA R E, POMELLA A W, COSTA H S, et al. Endophytic Fungal Diversity in Theobroma Cacao (Cacao) and T. grandiflorum (Cupuacu) Trees and Their Potential for Growth Promotion and Biocontrol of Black-Pod Disease [J]. Fungal Biology, 2010, 114(11/12): 901-910. [8] ARNOLD A E, MEIJIA L C, KYLLO D, et al. Fungal Endophytes Limit Pathogen Damage in a Tropical Tree [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15649-15654. doi: 10.1073/pnas.2533483100 [9] doi: https://www.researchgate.net/publication/269393867_Endophytic_Bacillus_spp_produce_antifungal_lipopeptides_and_induce_host_defence_gene_expression_in_maize GOND S K, BERGEN M S, TORRES M S, et al. Endophytic Bacillus spp. Produce Antifungal Lipopeptides and Induce Host Defence Gene Expression in Maize [J]. Microbiological Research, 2015, 172: 78-87. [10] HODGSON S, de CATES C, HODGSON J, et al. Vertical Transmission of Fungal Endophytes is Widespread in Forbs [J]. Ecology and Evolution, 2014, 4(8): 1199-1208. doi: 10.1002/ece3.2014.4.issue-8 [11] XIE J, STROBEL G A, MENDS M T, et al. Collophora Aceris, a Novel Antimycotic Producing Endophyte Associated with Douglas Maple [J]. Micorbial Ecology, 2013, 66(4): 784-795. doi: 10.1007/s00248-013-0281-5 [12] MARTINUZ A, SCHOUTEN A, SIKORA R A. Systemically Induced Resistance and Microbial Competitive Exclusion: Implications on Biological Control [J]. Phytopathology, 2012, 102(3): 260-266. doi: 10.1094/PHYTO-04-11-0120 [13] VENDAN R T, YU Y J, LEE S H, et al. Diversity of Endophytic Bacteria in Ginseng and Their Potential for Plant Growth Promotion [J]. The Journal of Microbiology, 2010, 48(5): 559-565. doi: 10.1007/s12275-010-0082-1 [14] CONN V M, WALKER A R, FRANCO C M. Endophytic Actinobacteria Induce Defense Pathways in Arabidopsis Thaliana [J]. Molecular Plant-Microbe Interactions, 2008, 21(2): 208-218. doi: 10.1094/MPMI-21-2-0208 [15] 路国兵, 冀宪领, 张瑶, 等.桑树内生细菌的分离及生防益菌的筛选[J].蚕业科学, 2007, 33(3): 350-354. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE200703004.htm [16] 谭广秀. 具有抑菌活性的桑树内生菌的分离鉴定及其抑菌物质的研究[D]. 镇江: 江苏科技大学, 2012. [17] 张飞官, 高雅慧, 任慧爽, 等.桑疫病病原拮抗菌的分离、鉴定及发酵条件优化[J].微生物学报, 2013, 53(12): 1285-1294. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201312006.htm [18] 谢洁, 任慧爽, 唐翠明, 等.一株桑树内生细菌的鉴定和对桑椹核地杖菌的拮抗作用[J].蚕业科学, 2015, (5): 815-824. doi: http://cdmd.cnki.com.cn/Article/CDMD-10434-2008206641.htm [19] 邱服斌. 培养方法与非培养方法对人参根内生细菌的研究[D]. 北京: 首都师范大学, 2007: 3-8. [20] 程晓燕, 李文军, 王芸, 等.新疆野生胀果甘草内生细菌多样性的非培养初步分析[J].微生物学报, 2009, 49(6): 718-725. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-WSXB200906008.htm [21] CHELIUS M K, TRIPLETT E W. The Diversity of Archaea and Bacteria in Association With the Roots of Zea mays L. [J]. Microbial Ecology, 2001, 41(3): 252-263. doi: 10.1007/s002480000087 [22] 孙磊. 非培养方法和培养方法对水稻内生细菌和根结合细菌的研究[D]. 北京: 首都师范大学, 2006: 29-30. [23] 吴晓菡. 几种樟科和木兰科植物内生真菌多样性比较研究[D]. 上海: 华东师范大学, 2011. [24] IMPULLITTI A E, MALVICK D K. Fungal Endophyte Diversity in Soybean [J]. Journal of Applied Microbiology, 2013, 114(5): 1500-1506. doi: 10.1111/jam.2013.114.issue-5 [25] GAZIS R, CHAVERRI P. Diversity of Fungal Endophytes in Leaves and Stems of Wild Rubber Trees (Hevea brasiliensis) in Peru [J]. Fungal Ecology, 2010, 3(3): 240-254. doi: 10.1016/j.funeco.2009.12.001 [26] 吴晓菡, 李文超, 秦路平.天目山山胡椒不同部位内生真菌组成及多样性分析[J].植物资源与环境学报, 2012, 21(2): 107-113. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZWZY201202017.htm [27] QADRI M, RAJPUT R, ABDIN M Z, et al. Diversity, Molecular Phylogeny, and Bioactive Potential of Fungal Endophytes Associated with the Himalayan Blue Pine (Pinus wallichiana) [J]. Microbial Ecology, 2014, 67(4): 877-887. doi: 10.1007/s00248-014-0379-4 [28] DIAS M, da CRUZ PEDROZO MIGUEL M G, DUARTE W F, et al. Epiphytic Bacteria Biodiversity in Brazilian Cerrado Fruit and Their Cellulolytic Activity Potential [J]. Annals of microbiology, 2015, 65(2): 851-864. doi: 10.1007/s13213-014-0927-7 [29] GUO L D, HYDE K D, LIEW E C. Detection and Taxonomic Placement of Endophytic Fungi within Frond Tissues of Livistona Chinensis Based on rDNA Sequences [J]. Molecular Phylogenetics and Evolution, 2001, 20(1): 1-13. doi: 10.1006/mpev.2001.0942 [30] ARNOLD A E, HENK D A, EELLS R L, et al. Diversity and Phylogenetic Affinities of Foliar Fungal Endophytes in Loblolly Pine Inferred by Culturing and Environmental PCR [J]. Mycologia, 2007, 99(2): 185-206. doi: 10.1080/15572536.2007.11832578 [31] ZHOU S L, YAN S Z, LIU Q S, et al. Diversity of Endophytic Fungi Associated with the Foliar Tissue of a Hemi-Parasitic Plant Macrosolen Cochinchinensis [J]. Current Microbiology, 2015, 70(1): 58-66. doi: 10.1007/s00284-014-0680-y [32] ALLEN T R, MILLAR T, BERCH S M, et al. Culturing and Direct DNA Extraction Find Different Fungi From the Same Ericoid Mycorrhizal Roots [J]. New Phytologist, 2003, 160(1): 255-272. doi: 10.1046/j.1469-8137.2003.00885.x