-
植物在长期进化过程中,会逐步形成对自身有益、适宜自身生长发育的一系列调节机制,转录因子在这些调控过程中具有重要的作用.转录因子也称为反式作用因子,能够与真核基因启动子区域中顺式作用元件特异性结合,并激活或抑制基因的转录[1]. WRKY作为一种重要的锌指蛋白类转录因子,近年来研究的较为广泛.其编码基因最先在甘薯[2]中被克隆到,随后约在20多种植物中证实存在WRKY蛋白[3]. WRKY转录因子最显著的特征是含有一个由60个氨基酸组成的多肽,这个多肽N端至少含有一个WRKY的核心结构域WRKYGQK,C端含有一个非典型的锌指结构[4].根据WRKY锌指结构的特征及WRKY结构域的数量,将WRKY蛋白分为3类:第Ⅰ类含有1个WRKY结构域,锌指结构为CX4-5CX22-23HX1H;第Ⅱ类含有2个WRKY结构域,其锌指结构是CX4-5CX22-23HX1H,与第Ⅰ类的结构相同;第Ⅲ类与第Ⅰ类同样含有1个WRKY结构域,但是锌指结构不同,为CX7CX23HX1C[4].大多数的WRKY转录因子属于第Ⅱ类,而第Ⅲ类WRKY转录因子一般只存在于高等植物中,并且能响应多种生物胁迫[5].
近年来,研究发现WRKY基因广泛存在于各个物种中:拟南芥中有72个[6],水稻中有102个,大豆中有197个[7],番茄中有81个[8].对这些WRKY基因的表达研究表明,它不仅能在植物受到生物胁迫和非生物胁迫时诱导表达,还能受到外源施加激素的诱导表达.现有的研究表明,WRKY基因在植物生物胁迫或非生物胁迫过程中具有很重要的作用.在生物胁迫方面,超表达辣椒的WRKY基因CaWRKY40能增强烟草对茄科雷尔氏菌的抵抗力[9];拟南芥中超表达AtWRKY38和AtWRKY62后,植株对丁香假单胞菌的侵染更加敏感[10];同样,将辣椒的一个WRKY基因CaWRKY27在烟草里面超量表达,提高了烟草抗青枯病的能力[11].在非生物胁迫方面,拟南芥的AtWRKY57通过提高拟南芥ABA水平来增强其对干旱的耐受性[12];小麦中的TaWRKY44在烟草中超量表达提高了烟草抗多种非生物逆境的能力[13];棉花中的GhWRKY34基因在拟南芥中超量表达提高了其抗盐碱的能力[14].此外,有些WRKY基因既在生物逆境中又在非生物逆境中有作用,如棉花的GhWRKY25可以调节SA和JA信号途径来降低植物对病原菌的抵抗能力和抗旱能力[15].
番茄(Solanum lycopersicum)是世界性的重要的蔬菜作物,全球番茄产量达到1.6亿吨,其中超过30%产自我国(FAO,2015),在我国农业产业中具有重要的地位.随着全球气候变化的加剧,非生物逆境越来越成为农作物产量和品质提高的严重制约因素,也影响着植物的进化和分布[16-17].利用野生番茄种质资源探索植物抗逆分子机制,可为创造抗逆新品种奠定理论基础及提供实践价值.普通栽培番茄(S.lycopersicum)对干旱和高盐较为敏感[18],而其近缘野生种潘那利番茄(S. pennellii)起源于秘鲁安第斯山脉,可在干旱和半干旱环境中生存,对高盐和干旱不敏感[19].分析抗旱野生种和普通栽培种在干旱响应基因中的差异,通过转基因的方法将野生种相关基因转化到普通栽培番茄种中,是提高栽培番茄抗逆性的一种非常有效的方法.本研究分别从抗旱野生种番茄和栽培番茄中分离出一个WRKY基因,分析了它们的表达特性,并构建了超量表达载体,成功转化进普通栽培番茄M82中,为今后深入研究该基因的抗逆功能和提高番茄的抗逆性奠定基础.
Cloning and Expression Analysis of a WRKY41 Gene in Tomato and Its Transfer into a Tomato Cultivar
-
摘要: 基于前期基因芯片结果,RT-PCR获得栽培品种番茄M82和近缘野生种潘那利的一个WRKY基因的全长cDNA序列,分别命名为SlWRKY41和SpWRKY41.序列分析表明,番茄WRKY41基因长为1011bp,编码336个氨基酸.该氨基酸序列含有5′-N端WRKYGQK核心结构域和CX7CX23HX1C锌指结构,具有WRKY家族的典型结构特征.同源分析表明,该氨基酸序列与多种植物的WRKY类蛋白具有较高的同源性,并且在普通栽培番茄品种M82和野生种潘那利中,只有5个氨基酸位点的差异.进化树分析表明,WRKY41在番茄中属于第Ⅲ类WRKY蛋白,这类蛋白为植物所特有.表达分析结果表明,WRKY41在普通栽培番茄品种M82和野生种潘那利中,不仅在不同组织器官中的表达存在差异,而且在逆境(干旱和氧化逆境)和一些调节因子(SA、GA、乙烯)的处理下也有不同的表达模式.其在野生种潘那利中能够迅速响应相关调节因子(SA、GA、乙烯),推测WRKY41在番茄抗逆响应过程中具有很重要的作用,SpWRKY41可能是一个较好的改良普通栽培种抗逆性的候选基因.通过构建超量表达载体,成功地将SpWRKY41转化到番茄M82中,以期深入研究该基因的功能和提高番茄的抗逆性.Abstract: Based on the results of microarray transcriptional analysis, a full-length cDNA sequence of the WRKY gene from M82, a cultivar of Solanum lycopersicum, and from the wild species S. pennellii LA0716 by RT-PCR, which were named as SlWRKY41 and SpWRKY41, respectively. Sequence analysis showed that SlWRKY41 and SpWRKY41 gene contained a 1 011-bp open reading frame (ORF) encoding 336 amino acids. As the typical structure features of the WRKY family, a 5′-N WRKYGQK domain and a central zinc finger region CX7CX23HX1C were identified in the amino acid sequence of WRKY41 protein. The deduced SlWRKY41 and SpWRKY41 protein was found to be highly homologous to the WRKY proteins from many other plants, and these two putative amino acids shared 97.62% similarity, differing only in five residues. Phylogenetic tree analysis indicated that WRKY41 fell into Group Ⅲ, which is unique to plants. The real-time PCR results suggested that the WRKY41 gene showed differential expression patterns in M82 and LA0716 not only in different tissues and organs but also in various stress or regulator treatments. Interestingly, SpWRKY41 was responded very quickly by SA, GA and Eth. It is conjectured that SpWRKY41 may play a crucial role in resistance to abiotic stress and is a good candidate gene for improving stress-resistance of cultivated tomato. Furthermore, an overexpression vector was constructed, which then successfully transferred SpWRKY41 to tomato M82 to enhance its abiotic tolerance.
-
Key words:
- Solanum lycopersicum /
- wild species S. pennellii /
- WRKY41 /
- expression pattern /
- drought resistance .
-
[1] 郝中娜, 陶荣祥. WRKY转录因子超家族的研究[J].生命科学, 2006, 18(2): 175-179. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SMKX200602015.htm [2] doi: https://www.researchgate.net/publication/225854864_Characterization_of_a_cDNA_encoding_a_novel_DNA-binding_protein_SPF1_that_recognizes_SP8_sequences_in_the_5_upstream_regions_of_genes_coding_for_sporamin_and_-amylase_from_sweet_potato ISHIGURO S, NAKAMURA K. Characterization of a cDNA Encoding a Novel DNA-Binding Protein, SPF1, That Recognizes SP8 Sequences in the 5' Upstream Regions of Genes Coding for Sporamin and Beta-Amylase from Sweet Potato [J]. Mol Gen Genet, 1994, 244(6): 563-571. [3] doi: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.536.7244 WU K L, GUO Z J, WANG H H, et al. The WRKY Family of Transcription Factors in Rice and Arabidopsis and Their Origins [J]. DNA Res, 2005, 12(1) 12: 9-26. [4] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY Superfamily of Plant Transcription Factors [J]. Trends Plant Sci, 2000, 5(5): 199-206. doi: 10.1016/S1360-1385(00)01600-9 [5] 苏琦, 尚宇航, 杜密英, 等.植物WRKY转录因子研究进展[J].中国农学通报, 2007, 23(5): 94-98. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201603007.htm [6] EULGEM T, SOMSSICH I E. Networks of WRKY Transcription Factors in Defense Signaling. Curr Opin Plant Biol, 2007, 10(4): 366-371. doi: 10.1016/j.pbi.2007.04.020 [7] SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome Sequence of the Palaeopolyploid Soybean [J]. Nature, 2010, 463(7278): 178-183. doi: 10.1038/nature08670 [8] 万红建, 俞锞, 袁伟, 等.番茄WRKY转录因子in silico鉴定及表达分析[J].分子植物育种, 2013, 11(1): 90-98. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201301017.htm [9] DANG F F, WANG Y N, YU L, et al. CaWRKY40, a WRKY Protein of Pepper, Plays an Important Role in the Regulation of Tolerance to Heat Stress and Resistance to Ralstonia Solanacearum Infection [J]. Plant Cell Environment, 2013, 36(4): 757-774. doi: 10.1111/pce.2013.36.issue-4 [10] KIM KC, LAI Z, FAN B, et al. Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense [J]. Plant Cell, 2008, 20(9): 2357-2371. doi: 10.1105/tpc.107.055566 [11] DANG F, WANG Y, SHE J, et al. Overexpression of CaWRKY27, a Subgroup IIe WRKY Transcription Factor of Capsicum Annuum, Positively Regulates Tobacco Resistance to Ralstonia Solanacearum Infection [J]. Physiol Plant, 2014, 150(3): 397-411. doi: 10.1111/ppl.2014.150.issue-3 [12] JIANG Y, LIANG G, YU D. Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis [J]. Mol Plant, 2012, 5(6): 1375-1388. doi: 10.1093/mp/sss080 [13] doi: https://www.researchgate.net/publication/281393925_Expression_of_TaWRKY44_a_wheat_WRKY_gene_in_transgenic_tobacco_confers_multiple_abiotic_stress_tolerances WANG X, ZENG J, LI Y, et al. Expression of TaWRKY44, a Wheat WRKY Gene, in Transgenic Tobacco Confers Multiple Abiotic Stress Tolerances [J]. Front Plant Sci, 2015(6): 615. [14] doi: https://www.infona.pl/resource/bwmeta1.element.elsevier-f820176f-7332-3eba-bc66-3c100033eb00/tab/contributors ZHOU L, WANG N N, GONG S Y, et al. Overexpression of a Cotton (Gossypium Hirsutum) WRKY Gene, GhWRKY34, in Arabidopsis Enhances Salt-Tolerance of the Transgenic Plants [J]. Plant Physiol Biochem, 2015(96): 311-320. [15] LIU X, SONG Y, XING F, et al. GhWRKY25, a Group I WRKY Gene from Cotton, Confers Differential Tolerance to Abiotic and Biotic Stresses in Transgenic Nicotiana Benthamiana [J]. Protoplasma, 2016, 253(5): 1265-1281. doi: 10.1007/s00709-015-0885-3 [16] 孙凡, 赵靖明, 姚小华, 等.水分胁迫逆境处理对水土保持经济树种长山核桃的生理特性的影响[J].西南大学学报(自然科学版), 2014, 36(4): 1-7. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNND201404001.htm [17] 曹岩坡, 代鹏, 戴素英.盐胁迫对芦笋幼苗生长和体内Na+、K+、Ca+分布的影响[J].西南大学学报(自然科学版), 2014, 36(10): 31-36. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2014-10-031&flag=1 [18] GONG P, ZHANG J, LI H, et al. Transcriptional Profiles of Drought-Responsive Genes in Modulating Transcription Signal Transduction, and Biochemical Pathways in Tomato [J]. J Exp Bot, 2010, 61(13): 3563-3575. doi: 10.1093/jxb/erq167 [19] doi: https://link.springer.com/content/pdf/10.1007%2F978-1-4684-2880-3_17.pdf RICK C M. Potential Genetic Resources in Tomato Species: Clues from Observations in Native Habitats [J]. Basic Life Sci, 1973(2): 255-269. [20] 欧阳波. 几种病程相关蛋白基因转化番茄的研究[D]. 武汉: 华中农业大学, 2002. [21] BANERJEE A, ROYCHOUDHURY A. WRKY Proteins: Signaling and Regulation of Expression During Abiotic Stress Responses [J]. The Scientific World Journal, 2015: 807560. doi: 10. 1155/2015/807560. [22] MA Y, SLEWINSKI T L, BAKER R F, BRAUN D M. Tie-Dyed1 Encodes a Novel, Phloem-Expressed Transmembrane Protein That Functions in Carbohydrate Partitioning [J]. Plant Physiol, 2009, 149(1): 181-194. doi: 10.1104/pp.108.130971 [23] 李淑敏, 茆振川, 李蕾, 等.辣椒抗根结线虫相关WRKY基因的分离[J].园艺学报, 2008, 35(10): 1467-1472. doi: 10.3321/j.issn:0513-353X.2008.10.010 [24] CHEN C, CHEN Z. Potentiation of Developmentally Regulated Plant Defense Response by AtWRKY18, a Pathogen-Induced Arabidopsis Transcription Factor. Plant Physiol [J]. 2002, 129(2): 706-716. [25] 王彦华, 侯喜林, 申书兴.白菜WRKY转录因子cDNA全长的克隆及分析[J].农业生物技术学报, 2007, 15(5): 810-815. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-NYSB200705016.htm [26] RYU H S, HAN M, LEE S K, et al. A Comprehensive Expression Analysis of the WRKY Gene Superfamily in Rice Plants During Defense Response [J]. Plant Cell Rep, 2006, 25(8): 836-847. doi: 10.1007/s00299-006-0138-1 [27] 刘戈宇, 胡鸢雷, 赵锋, 等.厚叶悬蒴苣苔BcWRKY1转录因子基因的克隆及初步的功能分析[J].北京大学学报(自然科学版), 2007, 43(4): 446-452. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200704003.htm [28] MARCHIVE C, MZID R, DELUC L, et al. Isolation and Characterization of a Vitis Vinifera Transcription Factor, VvWRKY1, and Its Effect on Responses to Fungal Pathogens in Transgenic Tobacco Plants [J]. J Exp Bot, 2007, 58(8): 1999-2010. doi: 10.1093/jxb/erm062