-
中国的甘薯种植面积占世界50%以上,是全球的甘薯生产大国[1-2].甘薯富含纤维、淀粉、维生素和蛋白质等[3].甘薯淀粉生产会产生大量废水,废水中富含水溶性物质,如β-淀粉酶(1,4-α-D-glucan maltohydrolase EC3.2.1.2)的含量非常高[4],回收该β-淀粉酶可创造巨大的经济效益.我国甘薯消费以鲜食和加工为主,由于甘薯品种多元化,因此推广面积有所增加.研究和利用高淀粉甘薯品种的一个重要任务就是探究β-淀粉酶性质. β-淀粉酶是一种外切酶,在高等植物内比较常见,断裂淀粉的非还原性末端的α-1,4糖苷键,逐个除去二糖单位,最后形成大约50%的麦芽糖和大分子核心—β-极限糊精[5]. β-淀粉酶多用于医药、酿造、纺织以及食品加工行业[6],在食品发酵方面可以作为饮料、啤酒等生产的糖化剂;在啤酒酿造上,利用β-淀粉酶代替麦芽,可节约麦芽用量,辅料比可提高50%~75%[7];在食品行业,主要用来生产麦芽糊精、麦芽糖和麦芽糖浆.不同物种、同物种不同品系来源的β-淀粉酶,其特点和含量差别较大[8-9];不同的提取分离纯化方法其纯化效果也有较大差别[10-11].本实验以重庆市甘薯工程研究中心综合应用型甘薯品种“渝薯17”为实验材料,分离纯化β-淀粉酶并研究其酶学性质,为综合利用和深度开发β-淀粉酶奠定理论基础.
A Study of Isolation and Purification of β-Amylase and Its Enzymatic Properties
-
摘要: 以“渝薯17”为实验材料,从淀粉生产废水中分离纯化β-淀粉酶.去皮、1:10(m/V)匀浆抽提,经过乙醇分级沉淀、DEAE-Sepharose离子交换层析和Superdex-200凝胶过滤层析获得电泳纯β-淀粉酶并对其酶学性质进行了研究.结果表明:该酶的比活力高达333.15 U/mg,显著高于市售枯草杆菌来源酶活(50 U/mg);纯化倍数9.93倍,回收率66.60%;亚基分子量约为55.12 kD,全酶分子量约为223.54 kD;最适温度50 ℃,最适pH值6.2;50 ℃以下,pH值6~8具较好的稳定性.在最适条件下以可溶性淀粉为底物,测得Km为0.001 36 g/mL,Vmax为0.112 mg/mL·min;Mn2+,Pb2+,Li+,Zn2+,K+,Cu2+,草酸,SDS对该酶有不同程度的抑制作用,Co2+有激活作用,有机物作用不明显.Abstract: β-Amylase was extracted and purified from the starch production wastewater with the sweet potato variety "Yushu 17" as the raw material. After peeling, 1:10 (m/V) homogenizing extraction, fractional precipitation with ethanol, DEAE-Sepharose ion exchange chromatography and Superdex-200 gel filtration chromatography, electrophoretically pure β-amylase was obtained. Then its enzymatic properties were studied. The results showed that the specific activity of β-amylase obtained in this study (333.15 U/mg) was significantly higher than that of commercially available sources of Bacillus subtilis (50 U/mg); its purification fold was 9.93 and its recovery rate was 66.6%; its subunit molecular weight was about 55.12 kD and its enzyme molecular weight was about 223.54 kD; and its optimum temperature was 50℃ and its optimum pH was 6.2. This β-amylase showed good stability with a temperature of < 50℃ and a pH of 6~8. Measured under the optimal conditions with soluble starch as the substrate, it had a Km of 0.001 36 g/mL and a Vmax of 0.112 mg/mL·min. In addition, Mn2+, Pb2+, Li+, Zn2+, K+, Cu2+, oxalic acid and SDS inhibited, in different extents, this β-amylase, Co2+ activated it, and organic matter had no obvious effect on it.
-
Key words:
- sweet potato /
- β-amylase /
- separation and purification /
- enzymatic property .
-
表 1 10 g鲜质量“渝薯17”中β淀粉酶分离纯化结果
纯化步骤 总酶活/
IU总蛋白/
mg比活力/
(U·mg-1)回收率/
%纯化倍数 粗酶液 5 667.53 169.01 33.53 100 1 乙醇沉淀 4 953.51 29.32 168.95 87.40 5.04 DEAE-Sepharose层析 4 069.94 19.31 210.77 71.81 6.29 Superdex-200层析 3 774.57 11.33 333.15 66.60 9.93 -
[1] 农业部科技教育司, 财政部教科文司.中国农业产业技术发展报告(2009年度) [M].北京:中国农业出版社, 2010. [2] 农业部科技教育司, 财政部教科文司.中国农业产业技术发展报告(2010年度) [M].北京:中国农业出版社, 2010. [3] 贾彦杰. 甘薯β-淀粉酶提取纯化及酶学性质研究[D]. 洛阳: 河南科技大学, 2011: 6-42. [4] 马代夫, 李强, 曹清河, 等.中国甘薯产业及产业技术的发展与展望[J].江苏农业学报, 2012, 28(5): 969-973. doi: http://www.cqvip.com/QK/91278A/201101/37401332.html [5] 王镜岩, 朱圣庚, 徐长法.生物化学教程[M].北京:高等教育出版社, 2008. [6] AINA A J, FALADE K O, AKINGBALA J O, et al. Physicochemical Properties of Twenty-One Caribbean Sweet Potato Cultivars [J]. International Journal of Food Science & Technology, 2009, 44(9): 1696-1704. [7] 张万利, 梁新红, 孙俊良, 等.离子交换层析分离纯化甘薯β-淀粉酶[J].河南科技学院学报(自然科学版), 2017, 45(2): 23-28. doi: http://www.cqvip.com/Main/Detail.aspx?id=1001355204 [8] SWANSTON J S, molINA-CANO J L. Beta, Amylase Activity and Thermostability in Two Mutants Derived from the Malting Barley cv. Triumph [J]. Journal of Cereal Science, 2001, 33(2): 155-161. doi: 10.1006/jcrs.2000.0364 [9] doi: http://www.academia.edu/13402024/Purification_characterization_immunolocalization_and_structural_analysis_of_the_abundant_cytoplasmic_beta-amylase_from_Calystegia_sepium_hedge_bindweed_rhizomes VAN DAMME E J, HU J, BARRE A, et al. Purification, Characterization, Immunolocalization and Structural Analysis of the Abundant Cytoplasmic Beta-Amylase from Calystegia Sepium (Hedge Bindweed) Rhizomes [J]. Febs Journal, 2001, 268(23): 6263. [10] 田亚平, 郭鸿飞, 肖光焰, 等.一种麦芽β-淀粉酶的纯化和特性研究[J].食品工业科技, 2003, 24(9): 22-24. doi: http://cdmd.cnki.com.cn/Article/CDMD-10295-2009250823.htm [11] doi: https://www.deepdyve.com/lp/elsevier/an-efficient-purification-process-for-sweet-potato-beta-amylase-by-EX3ZXcwA2M TEOTIA S, KHARE S K, GUPTA M N. An Efficient Purification Process for Sweet Potato Beta-Amylase by Affinity Precipitation with Alginate [J]. Enzyme & Microbial Technology, 2001, 28(9-10): 792. [12] SAGU S T, NSO E J, HOMANN T, et al. Extraction and Purification of Beta-Amylase from Stems of Abrus Precatorius by Three Phase Partitioning. [J]. Food Chemistry, 2015, 183: 144-153. doi: 10.1016/j.foodchem.2015.03.028 [13] 王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2006. [14] 王丹, 傅婷, 万骥, 等.牛肝谷氨酸脱氢酶的分离纯化及部分酶学性质[J].食品科学, 2015, 36(13): 178-183. doi: 10.7506/spkx1002-6630-201513033 [15] 高路. 紫甘薯多酚氧化酶和β-淀粉酶酶学特性的研究[D]. 沈阳: 沈阳农业大学, 2008. [16] 李莹, 周剑忠, 黄开红.甘薯β-淀粉酶的纯化和特性研究[J].江苏农业学报, 2009, 25(1): 182-184. doi: http://mall.cnki.net/magazine/Article/ZNGZ200904004.htm [17] 梁新红, 孙俊良, 马汉军, 等.两步超滤法分离甘薯β-淀粉酶[J].食品科学, 2015, 36(21): 180-184. doi: 10.7506/spkx1002-6630-201521034 [18] 关艳艳. 大豆乳清废水中β-淀粉酶的分离纯化、性质及应用研究[D]. 上海: 华东师范大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10269-1016145849.htm [19] 靳纪培. 麦芽中β-淀粉酶的提取、纯化及应用研究[D]. 无锡: 江南大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10295-2009250823.htm [20] 张晓晴. 香樟果实酪氨酸酶的分离、纯化和性质分析[D]. 无锡: 江南大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1397461