-
考虑分数阶椭圆方程
其中,
$\mathit{\Omega } \subset {\mathbb{R}^N}$ 为具有Lipschitz边界$\partial \mathit{\Omega } $ 的有界开区域,s∈(0,1),N>2s,$f \in C\left( {\mathit{\overline \Omega } \times \mathbb{R}, \mathbb{R}} \right)$ ,且满足条件:(f0)
$\mathop {\lim }\limits_{\left| t \right| \to \infty } \frac{{f\left( {x, t} \right)}}{t} = 0$ 对$x \in \mathit{\overline \Omega }$ 一致成立.(-Δ)s为分数阶椭圆算子,定义如下:
记
$Q = {\mathbb{R}^{2N}}\backslash \mathcal{O}$ ,其中$\mathcal{O} = C\left( \mathit{\Omega } \right) \times C\left( \mathit{\Omega } \right) \subset {\mathbb{R}^{2N}}$ 以及$C\left( \mathit{\Omega } \right) = {\mathbb{R}^N}\backslash \mathit{\Omega }$ .近年来,分数阶椭圆算子越来越多地出现在一些运用领域,例如极小曲面问题[1]、分数阶椭圆相变理论[2]以及分数阶量子力学问题[3]等.由文献[4]的命题4.4知,当s→1-时,算子(-Δ)s的极限为-Δ.用X(Ω)表示由Lebesgue可测函数构成的线性空间,满足赋予范数
令X0(Ω)={u∈X(Ω):
$u = 0\left( {{\rm{a}}{\rm{.e}}{\rm{.}}\;\;x \in {\mathbb{R}^N}\backslash \mathit{\Omega }} \right)$ ,则X0(Ω)为X(Ω)的线性闭子空间.由文献[5]知(X0(Ω),‖.‖X0)为Hilbert空间,其内积为并且当
$q \in \left[ {1, 2_s^ * } \right]\left( {2_s^ * = \frac{{2N}}{{N - 2s}}} \right)$ 时,嵌入X0(Ω)$\circlearrowleft$ Lq(Ω)是连续的;当q∈[1,2s*)时,嵌入X0(Ω)$\circlearrowleft$ Lq(Ω)是紧的.因此,对∀q∈[1,2s*],存在τq>0,使得由文献[6]知特征值问题
有一列单调递增的特征值0<λ1<λ2≤…≤λk≤…,相应的特征函数表示为ϕk. {ϕk}k∈
$\mathbb{N}$ 构成空间L2(Ω)以及空间X0(Ω)的正交基.若λk-1<λk=…=λk+m-1<λk+m,我们称λk(k≥2)是问题(3)的m(m∈$\mathbb{N}$ )重特征值.此时,λk的特征函数的全体构成X0(Ω)的线性闭子空间,表示为Z=span {ϕk,…,ϕk+m-1}.本文的主要结论如下:定理1 令λk为问题(3)的m重特征值,
$f \in C\left( {\mathit{\overline \Omega } \times \mathbb{R}, \mathbb{R}} \right)$ ,h∈L2(Ω).假设条件(f0)及下面的条件(H1)或(H2)成立:(H1)
$\mathop {\lim }\limits_{t \to \pm \infty } f\left( {x, t} \right) = \mp \infty $ 对x∈Ω一致成立;(H2)
$\mathop {\lim }\limits_{\left| t \right| \to \infty } F\left( {x, t} \right) = - \infty $ 对x∈Ω一致成立,且$\int_\mathit{\Omega } {h\phi {\rm{d}}x = 0\left( {\forall \phi \in Z} \right)}$ .则存在ε1>0,使得当λ∈(λk,λk+ε1)时,方程(1)至少存在2个解.
注1 注意到定理1中参数位于特征值λk的右边小邻域内,因此,这个问题本质上是参数从右边趋近非主特征值λk时解的多重性问题,称其为近共振问题.椭圆型方程近共振问题相关结论可参见文献[7-15].其中,文献[7]考察了分数阶椭圆方程关于左边近共振问题解的多重性,文献[8]考察了非线性项满足Landesman-Lazer型条件下的分数阶椭圆方程右边近共振问题解的多重性.参数从左边趋近时,近共振问题的多解性可以通过构造两个不同能量水平上的鞍点结构来获得;当参数从右边趋近λk时,λk的特征子空间引发的几何结构的改变导致不能再同时建立两个不同的鞍点结构.为此,文献[9]不得不运用分离球定理(也称作局部鞍点定理)来证明第二个解的存在性.文献[8-13]也都是采用这一思路.特别指出的是文献[14]的证明方法.文献[14]运用Galerkin逼近方法考察了一类椭圆系统,在一定程度上统一了左右两边逼近情况下的证明.受此启发,本文采用Galerkin逼近方法进行处理,从而避免使用分离球定理来处理参数从右边逼近时的近共振问题.
考虑泛函
因为非线性项
$f \in C\left( {\mathit{\overline \Omega } \times \mathbb{R}, \mathbb{R}} \right)$ 且满足次线性增长性条件(f0),因此Jλ∈C1(X0(Ω),$\mathbb{R}$ ).由变分法可知u∈X0(Ω)是方程(1)的解当且仅当u是泛函Jλ在空间X0(Ω)中的临界点.由条件(f0),对∀δ>0,存在Mδ>0,使得利用Hölder不等式及(2)式可知:
其中
${C_1} = {M_\delta }{\left| \mathit{\Omega } \right|^{\frac{1}{2}}}{\tau _2}$ ,C2=τ2‖h‖L2.由空间的直和分解可知:令:
定义:
且SWn,SWnZ分别表示BWn,BWnZ的球面.
引理1 在定理1的假设下,存在ε1>0,使得当λ∈(λk,λk+ε1)时,存在常数DV,Dλ-及ρλ->R->0,使得:
证 令u∈V.利用(5),(6),(7)式可得
取δ<
$\frac{{{\lambda _k} - {\lambda _{k - 1}}}}{{{\lambda _{k - 1}}\tau _2^2}}$ ,则$\frac{{{\lambda _k} - {\lambda _{k - 1}}}}{{{\lambda _{k - 1}}}} - \delta \tau _2^2$ >0.从而对∀u∈V,Jλ(u)有下界,即存在常数DV,使得Jλ≥DV+1,即(10)式成立(注意DV与λ无关).下面考察当u∈Wn
$ \oplus $ Z,条件(H1)或条件(H2)成立时的情形.首先考虑条件(H1)成立的情形.由f的连续性知,对任意常数K>0,存在CK>0,使得F(x,t)≤-K|t|+CK.特别地,取K=1+C2.注意到,对固定的n,Wn$ \oplus $ Z为有限维子空间,所有范数等价.令ε1=λ-λk>0,则令‖u‖X0=R-,使得CK|Ω|-R-<DV-1.当0<ε1<
$\frac{{2{\lambda _k}}}{{{R^ - }}}$ ,即$\frac{{{\varepsilon _1}}}{{2{\lambda _k}}}{\left( {{R^ - }} \right)^2}$ <1时,对∀u∈R-SWnZ,有Jλ(u)<DV,即(11)式成立.特别地,当u∈Wn时,类似(15)式可得
由于λ-λk+m<0且CK|Ω|-R-<DV-1<DV,故当u∈Wn且‖u‖X0≥R-时,Jλ(u)≤DV,即(12)式成立.
接下来考虑条件(H2)成立的情形.我们首先证明当u∈Wn
$\oplus $ Z时,有成立.为此,我们首先断言:对∀u∈SWnZ,存在常数σ>0,使得集合Ωu={x∈Ω:|u(x)|>σ}的测度|Ωu|>σ.事实上,若结论不成立,则存在一列{σj},σj→0,uj∈SWnZ使得|Ωuj|≤σj.当n→0时,{uj(x)}依测度收敛于0.因此,存在{uj}的子列,仍记作{uj},使得{uj}在Ω上几乎处处收敛于0.又由‖uj‖=1,存在{uj}的子列(仍记作{uj})和{u}∈Wn
$\oplus$ Z,满足{uj}在L2(Ω)中强收敛于u,{uj(x)}在Ω上几乎处处收敛于u(x).因此u≡0.然而0<$\frac{1}{{{\lambda _n}}} \le \int_\mathit{\Omega } {{{\left| u \right|}^2}{\rm{d}}x} $ ,矛盾.利用条件(H2)及性质
$f\left( {x, t} \right) \in C\left( {\mathit{\overline \Omega } \times \mathbb{R}, \mathbb{R}} \right)$ 易知F(x,t)上方有界,即存在常数CF使得对∀L>0,取M=(L+CF|Ω|)σ-1,由条件(H2)知存在常数tM>0,使得当|t|>tM时有F(x,t)<-M.又令K>
$\frac{{{t_M}}}{\sigma }$ ,则于是
$\int_{\left| {Ku} \right|>{t_M}} {F\left( {x, Ku} \right){\rm{d}}x} \le - M\sigma $ ,且$\int_{\left| {Ku} \right| \le {t_M}} {F\left( {x, Ku} \right){\rm{d}}x} \le {C_F}\left| \mathit{\Omega } \right|$ .因此,对∀L>0有根据L的任意性知(16)式成立.
对∀u∈Wn
$\oplus$ Z,记u=w+z,其中w∈Wn,z∈Z.取ε1=λ-λk<$\frac{{{\lambda _{k + m}} - {\lambda _k}}}{2}$ ,则根据(6),(8)式及条件(H2),有显然
其中C>0为某一常数.由(16)式知,存在R-,使得对∀u∈Wn
$\oplus$ Z且‖u‖X0=R-时,有于是
令ε1<
$\min \left\{ {\frac{{{\lambda _{k + m}} - {\lambda _k}}}{2}, \frac{{2{\lambda _k}}}{{{{\left( {{R^ - }} \right)}^2}}}} \right\}$ ,则对∀u∈R-SWnZ,有Jλ(z)<DV成立,即(11)式成立.若u∈Wn,则z=0.注意到当‖u‖X0≥R-时,有
$\int_\mathit{\Omega } {F\left( {x, u} \right)} {\rm{d}}x \le {D_V} - C - 1$ ,所以Jλ(u)<DV-1<DV,即(12)式成立.考虑u∈V
$\oplus$ Z.利用(5),(6),(7)式可得取δ<
$\frac{{\lambda - {\lambda _k}}}{{{\lambda _k}\tau _2^2}}$ ,则$\frac{{\lambda - {\lambda _k}}}{{{\lambda _k}}} - \delta \tau _2^2$ >0.从而对所有u∈Z$\oplus$ V,Jλ(u)有下界,即存在常数Dλ-(与λ有关)使得(13)式成立.考虑u∈Wn.利用(5),(6),(8)式可得
取δ<
$\frac{{{\lambda _{k + m}} - \lambda }}{{{\lambda _{k + m}}\tau _2^2}}$ ,则$\frac{{\lambda - {\lambda _{k + m}}}}{{{\lambda _{k + m}}}} + \delta \tau _2^2$ <0.这意味着当u∈Wn且‖u‖X0→∞时,Jλ(u)→-∞.因此,存在足够大的常数ρλ->R->0使得(14)式成立.令Jλ,n为Jλ限制在子空间En上的泛函,即Jλ,n=Jλ|En.显然,在定理1的假设下,Jλ,n与Jλ在子空间V,Z,Wn上满足相同的估计,即对泛函Jλ,n,引理1中的估计仍成立.下面的引理表明泛函Jλ,n在空间En(n>k+m)上满足(PS)条件(证明将在最后给出):
引理2 设λ∈(λk,λk+m).在定理1的条件下,泛函Jλ,n满足(PS)条件,即:假设序列{ui}⊂En使得Jλ,n(ui)有界,|〈Jλ,n′(ui),ϕ〉|≤
${\epsilon _i}$ ‖ϕ‖X0对每个ϕ∈成立,其中,当i→∞时${\epsilon _i}$ →0.则{ui}在En中有收敛子列.由引理1和引理2知,对每个n>k+m,泛函Jλ,n在空间En上存在2个鞍点结构的临界点.事实上,在子空间V和Z
$\oplus$ Wn上,由不等式(10)及(11)确定一个鞍点结构;在子空间V$\oplus$ Z和Wn上,由不等式(13)及(14)也确定一个鞍点结构.因此,存在泛函Jλ,n的临界点${\widetilde u_n}$ ,${\widetilde v_n}$ ∈En,满足:其中:
引理3 在引理1的条件下,对每个n>k+m,有dn-∈[Dλ-,DV]及cn-∈[DV+1,T],其中T>0是与n无关的常数.
证 根据dn-,cn-的定义,dn-≥Dλ-,cn-≥DV+1.定义连续映射
${\widetilde \gamma _1}$ :ρλ-BWn→En使得其中ek∈Z且‖ek‖X0=1.于是,当‖u‖X0≤R-时,由(11)式知Jλ,n(
${\widetilde \gamma _1}$ (u))<DV;当R-≤‖u‖X0≤ρλ-时,由(12)式知Jλ,n(${\widetilde \gamma _1}$ (u))<DV.因此,$ \mathop {\sup }\limits_{u \in \rho _\lambda ^ - {B_V}} {J_{\lambda , n}}\left( {{{\widetilde \gamma }_1}\left( u \right)} \right)$ <DV,这蕴含dn-<DV.由于恒等映射属于
$\mathit{\widetilde \Gamma }$ 1,故cn-≤$\mathop {\sup }\limits_{u \in {R^ - }{B_{{W_n}Z}}} {J_{\lambda , n}}\left( u \right)$ .设u∈Wn$\oplus $ Z,令w∈Wn,z∈Z,使得u=w+z.注意到λ∈(λk,λk+ε1),由(5),(6),(7)式和(9)式得这说明Jλ,n(u)在有界集R-BWnZ上关于n上方一致有界.因此,存在与n无关的常数T,使得cn-≤T.故
我们还需要下述引理(其证明将在最后给出):
引理4 假设λ∈(λk,λk+m),序列{ui}⊂X0(Ω),使得对每个i∈
$\mathbb{N}$ ,有ui∈Ei且Jλ,i(ui)有界,|〈Jλ,i′(ui),ϕ〉|≤${\epsilon _i}$ ‖ϕ‖X0对每个ϕ∈Ei成立,其中当i→∞时${\epsilon _i}$ →0.则{ui}在X0(Ω)中有界.定理1的证明 首先,根据引理3,存在d-∈[Dλ-,DV]及c-∈[DV+1,T],使得当n→∞时,通过取子列,有dn-→d-及cn-→c-.我们断言:存在泛函Jλ的临界点
${{\tilde u}_0}$ 和${{\tilde v}_0}$ ,满足Jλ(${{\tilde u}_0}$ )=c-和Jλ(${{\tilde v}_0}$ )=d-.事实上,由鞍点定理可知,对每个n>k+m,有Jλ,n(${{\tilde u}_n}$ )=cn-以及由引理4知{
${{\tilde u}_n}$ }在X0(Ω)中有界.于是,存在${{\tilde u}_0}$ ∈X0(Ω),使得:固定整数p满足p>k+m.在(17)式中取ϕ∈Ep,则对任意n>p,有
对(18)式取极限,得
这表明〈Jλ′(
${{\tilde u}_0}$ ),ϕ〉=0对每个ϕ∈Ep成立.因为$\mathop \cup \limits_{p>k + m} {E_p}$ 在X0(Ω)中稠密,因此Jλ′(${{\tilde u}_0}$ )=0,这蕴含${{\tilde u}_0}$ 为泛函Jλ在X0(Ω)中的临界点.接下来,我们证明Jλ(
${{\tilde u}_0}$ )=c-.令Pn:X0(Ω)→span{ϕ1,…,ϕn}为正交投影.于是,Pn(${{\tilde u}_0}$ )∈En,且当n→∞时,Pn(${{\tilde u}_0}$ )→${{\tilde u}_0}$ (x∈X0(Ω)).显然${{\tilde u}_n}$ -Pn${{\tilde u}_0}$ ∈En.在(17)式中取ϕ=${{\tilde u}_n}$ -Pn${{\tilde u}_0}$ ,得注意到
${{\tilde u}_n}$ -Pn${{\tilde u}_0}$ →0(x∈L2(Ω)),且{${{\tilde u}_n}$ }在L2(Ω)中关于n一致有界,因此,当n→∞时,$\lambda \int_\mathit{\Omega } {{{\tilde u}_0}\left( {{{\tilde u}_n} - {P_n}{{\tilde u}_0}} \right){\rm{d}}x}$ →0.于是,由(19)式得,当n→∞时,〈${{\tilde u}_n}$ ,${{\tilde u}_n}$ -Pn${{\tilde u}_0}$ 〉X0→0.故根据Pn
${{\tilde u}_0}$ →${{\tilde u}_0}$ (x∈X0(Ω)),及{${{\tilde u}_n}$ }在X0(Ω)中有界知,(20)式中最后一项〈${{\tilde u}_n}$ ,${{\tilde u}_0} - {P_n}{{\tilde u}_0}$ 〉X0→0,这蕴含〈${{\tilde u}_n}, {{\tilde u}_n}$ 〉X0→〈${{\tilde u}_0}, {{\tilde u}_0}$ 〉X0,即‖${{\tilde u}_n}$ ‖X0→‖${{\tilde u}_0}$ ‖X0.结合${{\tilde u}_n} \rightharpoonup {{\tilde u}_0}$ (x∈X0(Ω)),得${{\tilde u}_n}$ →${{\tilde u}_0}$ (x∈X0(Ω)).因此,Jλ(${{\tilde u}_n}$ )→Jλ(${{\tilde u}_0}$ ),这表明Jλ(${{\tilde u}_0}$ )=c-.再次利用鞍点定理得,对每个n>k+m,存在{
${{\tilde v}_n}$ }⊂X0(Ω),使得Jλ,n(${{\tilde v}_n}$ )=dn-,〈Jλ,n′(${{\tilde v}_n}$ ),ϕ〉=0(∀ϕ∈En).重复上面的讨论可知,存在
${{\tilde v}_0}$ ∈X0(Ω)为Jλ的临界点,使得${{\tilde v}_n}$ →${{\tilde v}_0}$ (x∈X0(Ω)),且Jλ(${{\tilde v}_0}$ )=d-.因为d-≤DV-1<DV≤c-,则${{\tilde u}_0}$ ≠${{\tilde v}_0}$ .最后,我们给出与紧性有关的两个引理的证明.
引理4的证明 令ui=vi+wi,其中vi∈V
$\oplus $ Z,wi∈Wi.联合(7),(8)式得根据(4)式和(6)式知,(21)式的最后两项有如下估计:
和
当n→∞时,Jλ,i′(ui)→∞.故当i充分大时,有
因此,结合(21),(22)和(22)式可知
取
则(24)式蕴含{ui}有界.
引理2的证明 由引理4的证明过程可知,对固定的n,若{ui}⊂En为(PS)序列,则{ui}在En中有界.注意到dim En<∞,立即可得{ui}有收敛子列.
Multiplicity Results for Fractional Elliptic Equations with Near Resonance
-
摘要: 考虑当线性项的参数从右边逼近非主特征值时分数阶椭圆方程的多解性.一方面,通过对泛函在不同特征子空间上的能量水平的估计可构造出一个具有鞍点结构的解;另一方面,当参数充分接近特征值时,结合鞍点定理、Galerkin逼近方法及对近共振对应的特征子空间上能量水平的仔细估算证明第二个解的存在性.
-
关键词:
- 分数阶椭圆方程 /
- 近共振 /
- 鞍点结构 /
- Galerkin逼近
Abstract: The present paper considers the multiplicity of the solution for fractional elliptic equations when the parameter of the linear term approximates to the non-principal eigenvalue from the right. On the one hand, we establish the existence of the first solution of saddle point geometry by calculating the energy level of the functional on different eigenspaces. On the other hand, we obtain the second solution by applying the saddle theorem and the Galerkin approximation method and by evaluating the energy level on the eigenspace when the linear part is near resonance.-
Key words:
- fractional elliptic equation /
- near resonance /
- saddle point geometry /
- Galerkin approximation .
-
-
[1] CAFFARELLI L, VALDINOCI E. Uniform Estimates and Limiting Arguments for Nonlocal Minimal Surfaces[J]. Calc Var Partial Differential Equations, 2011, 41(1-2):203-240. doi: 10.1007/s00526-010-0359-6 [2] SIRE Y, VALDINOCI E. Fractional Laplacian Phase Transitions and Boundary Reactions:a Geometric Inequality and a Symmetry Result[J]. J Funct Anal, 2009, 256(6):1842-1864. doi: 10.1016/j.jfa.2009.01.020 [3] LASKIN N. Fractional Quantum Mechanics and Lévy Path Integrals[J]. Phys Lett A, 2000, 268(4-6):298-305. doi: 10.1016/S0375-9601(00)00201-2 [4] ELEONORA D N, GIAMPIERO P, ENRICO V. Hitchhiker's Guide to the Fractional Sobolev Spaces[J]. Bull Sci Math, 2012, 136(5):521-573. doi: 10.1016/j.bulsci.2011.12.004 [5] SERVADEI R, VALDINOCI E. Mountain Pass Solutions for Non-Local Elliptic Operators[J]. J Math Anal Appl, 2012, 389(2):887-898. doi: 10.1016/j.jmaa.2011.12.032 [6] doi: http://www.ams.org/mathscinet-getitem?mr=3002745 SERVADEI R, VALDINOCI E. Variational Methods for Non-Local Operators of Elliptic Type[J]. Discrete Contin Dyn Syst, 2013, 33(5):2105-2137. [7] 郭灵钟, 姚娟, 索洪敏, 等.半线性分数阶椭圆型算子方程近共振问题的多重解[J].遵义师范学院学报, 2014, 16(1):87-91. doi: 10.3969/j.issn.1009-3583.2014.01.021 [8] 梁志霞, 欧增奇.拟线性椭圆方程近共振问题解的多重性[J].西南大学学报(自然科学版), 2018, 40(2):64-69. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201802011&flag=1 [9] PAIVA F O, MASSA E. Semilinear Elliptic Problems Near Resonance with a Nonprincipal Eigenvalue[J]. J Math Anal Appl, 2008, 342(1):638-650. doi: 10.1016/j.jmaa.2007.12.053 [10] SUO H M, TANG C L. Multiplicity Results for Some Elliptic Systems Near Resonance with a Nonprincipal Eigenvalue[J]. Nonlinear Anal, 2010, 73(7):1909-1920. doi: 10.1016/j.na.2009.11.004 [11] SUO H M, TANG C L. Degenerate Semilinear Elliptic Problems Near Resonance with a Nonprincipal Eigenvalue[J]. Bull Korean Math Soc, 2012, 49(4):669-684. doi: 10.4134/BKMS.2012.49.4.669 [12] KE X F, TANG C L. Multiple Solutions for Semilinear Elliptic Equations Near Resonance at Higher Eigenvalues[J]. Nonlinear Anal, 2011, 74(3):805-813. doi: 10.1016/j.na.2010.09.031 [13] KE X F, TANG C L. Existence and Multiplicity of Solutions for Asymptotically Linear Noncooperative Elliptic Systems[J]. J Math Anal Appl, 2011, 375(2):631-647. doi: 10.1016/j.jmaa.2010.09.041 [14] MASSA E, ROSSATO R A. Multiple Solutions for an Elliptic System Near Resonance[J]. J Math Anal Appl, 2014, 420(2):1228-1250. doi: 10.1016/j.jmaa.2014.06.043 [15] 陈清明, 李春, 欧增奇.拟线性椭圆方程在近共振处解的多重性[J].西南大学学报(自然科学版), 2014, 36(8):87-91. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2014-08-087&flag=1 -
计量
- 文章访问数: 736
- HTML全文浏览数: 438
- PDF下载数: 46
- 施引文献: 0